
Tormod Ravnanger Landet

Discontinuous Galerkin methods
for multiphase flow

Thesis submitted for the degree of Philosophiae Doctor

Department of Mathematics
Faculty of Mathematics and Natural Sciences

University of Oslo

2020

© Tormod Ravnanger Landet, 2020

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. XYZX

ISSN XYZY-XYZYX

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract
This thesis describes a finite element method for simulation of free-surface flows,
such as ocean waves, using the discontinuous Galerkin method. Free-surface
flows where there is a large difference in density between two immiscible fluids
will have a large jump in the magnitude of the momentum field at the interface
between the two fluids. Such discontinuities create problems for higher-order
discretisations, which are more computationally efficient where the solution is
smooth, but need careful handling near discontinuities in order to avoid Gibbs
oscillations. This thesis shows how slope limiting can be used to stabilise the
momentum equation in an exactly mass conserving discontinuous Galerkin finite
element discretisation of the Navier–Stokes equation. The stabilised method is
tested on a range of well known 2D and 3D free-surface-flow test cases. The
results are in good agreement with published experimental results, and also give
the expected higher-order convergence rates for smooth solutions.

i

Preface

I have been incredibly lucky to be able to work on whatever I wanted for more
or less the entirety of my scholarship. I want to give my sincerest thanks to the
Department of Mathematics at the University of Oslo for the opportunity to
have such a free position. There may have been times when I would gladly have
traded some of that academic freedom for a position in a team—doing a more
collaborative, shared-frustrations type of research—but in the end, maybe the
humbling experience of going it alone is an integral part of the PhD experience.
What I do know is that I am incredibly proud of what I have accomplished,
though I sometimes question how on earth it could take so long.

On the topic of efficiency, it took me six years of working as a wave-loads
consultant to finally come to the realisation that the time was right for further
studies. I had always said that I would eventually apply for a PhD position, but
I think my boss, Olav Rognebakke, may have almost given up on encouraging
me to get on with it when I finally sat down and wrote the application letter.
It was seeing how much fun and personal growth can be had from working on
a PhD project that made me finally want to do it, and I must thank my wife,
Ann Kristin Sperrevik, for being so good at leaving most of the frustrations and
insecurities inherent in the life of a researcher behind her before coming home
every evening—something I have since learned is vital to the mental health of
any PhD student. Thank you for showing me the all the good sides of research,
and also for acknowledging the less good sides as I discovered them.

I would like to thank all my colleagues at DNV GL for keeping me sharp
all those years away from university. Life as a consultant was both enjoyable
and rewarding, mostly due to the great team spirit and all the nice people I
worked with. To all my UiO colleagues: thank you for the open social and
academic atmosphere; from the ionosphere ninjas and down to the planet core
deep thinkers, with everything from oceans to Kolmogorov scales in between,
thank you! There are so many of you with brilliant ideas and can-do attitudes.
I would love to have some alternative time lines to work with all of you and
learn more about your academic interests, but at least we got to share the most
important part of each day together, the lunch break! Special thanks to Miro
and Diako who were there when I started and made our shared office a welcoming
and productive place, and Erika, Susanne and Lisa for initiating and helping
organise social and sometimes academically relevant activities. Not every group
has such a great positive dynamic, and I am grateful that I ended up in the
mechanics group, easily provable to be the best group on campus.

Outside the mechanics group I would also like to thank Lucy, Biljana, Terje
and the rest of the administration for your support and nice conversations.
Sometimes it really helps to walk up and down a few stairs and get away from

iii

Preface

research for a few minutes. I would also like to thank the Ocean Modeling Group
in the Department of Marine and Coastal Sciences at Rutgers University for
welcoming me into their group and providing a space for me to work for six
months during the winter of 2018/2019.

Lastly, I would like to thank my supervisors, always full of smiles and
interesting ideas. Special thanks to Mikael Mortensen, my main supervisor, who
got stuck with me and my free surface problems, which arguably may not be as
explosive as combustion or as beautiful as spectral methods. I had the privilege
of choosing you—I hope you do not regret too much your friendly explanation of
university application procedures to the inexperienced young man who showed
up in your office one day and declared that he was ready to start researching.

Tormod Ravnanger Landet
Oslo, Norway, February 2020

iv

Contents

Abstract i

Preface iii

Contents v

1 Introduction 1
1.1 Problem statement . 1
1.2 Motivation . 2
1.3 Method selection . 4
1.4 Literature review . 9

1.4.1 Free-surface flow 9
1.4.2 DG FEM for incompressible flow 10
1.4.3 Slope limiters in DG FEM 10
1.4.4 Recent developments 10

1.5 The discontinuous Galerkin method 15
1.5.1 The advection equation 18
1.5.2 Elliptic operators 20

1.6 Convective stability—flux limiters 22
1.7 Convective stability—slope limiters 26
1.8 The volume-of-fluid method 29
References . 31

2 Summary of papers 43

Papers 46

I Slope limiting the velocity field in a two-phase flow solver 49
I.1 Introduction . 50
I.2 The numerical method . 52

I.2.1 Instabilities . 52
I.2.2 Preliminaries . 52
I.2.3 Discretisation . 53
I.2.4 Hdiv projection of the velocity field 58

I.3 Slope limiting . 59
I.3.1 The hierarchical Taylor-polynomial-based slope

limiter . 59
I.3.2 On slope limiting of solenoidal fields 62
I.3.3 A split solenoidal slope-limiting algorithm 67

v

Contents

I.4 Results . 68
I.4.1 Taylor-Green vortex 69
I.4.2 Dam break . 69
I.4.3 Tank filling . 72

I.5 Discussion . 74
I.6 Conclusion . 76
References . 76

II Exactly incompressible DG FEM pressure-splitting schemes 83
II.1 Introduction . 84
II.2 The DG FEM discretisation 87

II.2.1 Differential Poisson equation for the pressure . . 90
II.3 The IPCS-D method . 91
II.4 The IPCS-A method . 92
II.5 The SIMPLE method . 93
II.6 Exact mass conservation 94
II.7 Numerical experiments . 95

II.7.1 Taylor–Green 2D flow 95
II.7.2 Ethier–Steinman 3D flow 98
II.7.3 Efficiency . 100

II.8 Conclusions . 101
References . 101

III High-density-ratio two-phase flow simulations in 3D 107
III.1 Introduction . 108
III.2 Mathematical model of free-surface flow 109
III.3 Discontinuous Galerkin discretisation 110

III.3.1 Momentum equation 111
III.3.2 Continuity equation 112
III.3.3 Density transport 112
III.3.4 Velocity slope limiter 112

III.4 Solution algorithm . 113
III.5 Incoming waves and boundary reflections 115
III.6 Implementation . 118

III.6.1 Example input file 118
III.7 Numerical examples . 122

III.7.1 3D dam breaking 123
III.7.2 Cylinder in regular waves 124

III.8 Discussion . 128
References . 129

IV Ocellaris: a DG FEM solver for free-surface flows 135
References . 136

Conclusion 141

vi

Contents

Novelty 141

Suggestions for further work 142

Appendices 147

A Example: Lid-driven cavity flow 149
A.1 Introduction . 149
A.2 Results . 150
A.3 Input file . 150
References . 152

B Example: Taylor–Green vortex 153
B.1 Introduction . 153
B.2 Assessing the numerical viscosity 153
B.3 Results . 155
B.4 Input file . 157
References . 159

C Example: flow around 2D cylinder 161
C.1 Introduction . 161
C.2 Results . 162
C.3 Input file . 163
References . 168

vii

Chapter 1

Introduction

This thesis starts with a short description of the goals and motivations for the
work, followed by a brief introduction to available numerical methods and the
reasons why this work uses the discontinuous Galerkin finite element method
(DG FEM). The selected method is then introduced along with a summary of the
stability problems associated with convective operators in low- and high-order
discretisations. An introduction to surface-capturing volume-of-fluid (VOF)
methods is also included as this method is used in the papers, and the theory
fits the theme of convective stability. No novel research on surface capturing is
included in this work.

The main part of the thesis consists of three papers describing a numerical
method for free-surface flows, and one extended abstract which has been included
to highlight all the work that has gone into the code and documentation for the
Ocellaris solver, the code that has been developed through the work described
herein. After these papers the thesis ends with a conclusion, a summary of the
scientific novelty of the work, and recommendations for further work. A few
appendices are included to show examples how the Ocellaris solver can be used
to study relatively simple 2D flows, and also to provide additional insight into
the behaviour of the numerical scheme, such as the inherent numerical diffusion
in the DG FEM scheme and the remaining challenges related to using a slope
limiter in the viscous shear layer close to a no-slip wall.

1.1 Problem statement

This thesis describes the development of a new two-phase flow solver designed
to study air/water free-surface flows in complex domains. The main goals of the
numerical method are:

Goal 1 A higher-order numerical method for air/water free-surface flow.
Goal 2 Flow solver stability independently of the free surface treatment.
Goal 3 Exact mass conservation.

Two-phase free-surface flows can mean many things to different people. In this
work the focus is on medium-scale phenomena where viscosity plays a minor role,
such as ocean waves breaking into structures. Small-scale phenomena, such as
contact angles, wetting properties, and even surface tension itself, are disregarded
along with large-scale phenomena such as Coriolis forces and density differences
due to varying temperature and salinity. Turbulence is also disregarded, though
it is of course an important phenomenon at all scales, but not vitally important
for the kind of phenomena described herein.

1

1. Introduction

There is nothing fundamentally problematic about adding a turbulence model
and surface tension to the described method, but these topics are orthogonal
to the convective-stability topics of this thesis and have not been investigated.
That does not imply that these topics are easy, or that they are unaffected by
the choice of numerical scheme. The discretisation of surface tension and the
near-wall behaviour of RANS-type turbulence models are vital for the accuracy
of such methods, and these are large topics and highly dependent on the selected
discretisation.

The solver targets high-Reynolds-number flow, but this target is not due to
a focus on turbulence modelling or turbulent phenomena in this work. Goal 1
implies that the solver should be stable at standard viscosities for air and water,
just like it should be stable for a factor-1000 density jump which is what is
found at a free surface between water and air. Targeting high-Reynolds-number
flow just means that the selected methods should not depend on high-viscosity,
near-Stokes-flow, fluid parameters for stability.

1.2 Motivation

Established two-phase flow solvers in this domain (OpenFOAM, StarCCM+,
Fluent, FLOW-3D, FINE/Marine, Orca3D, etc.) are all based on low-order
finite volume methods with a volume-of-fluid representation of the free surface, a
method that goes back to SLIC and SOLA VOF (Hirt and Nichols 1981; Noh and
Woodward 1976). These codes use piecewise constant elements, normally with
static meshes, possibly with overlapping or gliding meshes to include moving
objects. More research-focused codes, such as Gerris and Basilisk, are designed
around automatic mesh-refinement methods, and can resolve fine free-surface
details in ways that are not generally possible for static-mesh methods without
orders of magnitude more computational cost (Popinet 2003; Popinet 2014). This
is called h-adaptivity, changing the local cell size parameter h to better resolve
details. Another way to improve the solution is to increase the polynomial order
of the approximating functions in cells where the solution is under-resolved,
called p-adaptivity.

The ultimate computational method—giving the fastest solution for a given
allowable error—is adaptive both in mesh cell size and element approximation
degree (Babuška and Dorr 1981). Such methods use many small and low-order
elements near discontinuities, such as the free surface, and few and large high-
order elements in areas where the solution is smooth. Method complexity,
assembly speed, matrix reuse, parallelisability, mesh-refinement, CPU cache
limitations, efficient preconditioning of the resulting system, and many other
limiting factors may in reality lead to a different optimal solution at the current
time than the hp-adaptive method. Still, having the option of using higher-order
methods—at least in parts of the domain—is important also for free-surface
simulations.

Since studying free-surface flows with low order methods is the established
state of the art, and h-adaptivity is actively being explored in this domain by

2

Motivation

others, this thesis focuses solely on constructing a higher-order method (goal 1
above). Work on higher-order methods for this problem can in time be combined
with adaptivity both in space and polynomial order to form a hp-adaptive
method which should be very competitive, though hp-adaptivity is not the focus
of this thesis. The aim of the work described in this thesis is therefore not to
create a solver that is directly competitive with the state of the art in terms of
efficiency, but to create building blocks that can help further the goal of creating
hp-adaptive methods for free-surface flows which will eventually be much more
efficient than what is currently available.

An additional personal motivation is that the developed solver should be fast
and scalable enough to at least be able to run some real 3D test cases. This is
somewhat in conflict with the above paragraphs, as using higher-order elements
everywhere is not the most efficient, but being able to have high-order elements
also near the free surface should still be possible. It will not always be feasible,
or wanted, to resolve the free surface with a fine low-order mesh in all parts
of the domain. Figure 1.1 shows a snapshot from a simulation from Paper III
which shows that this is indeed possible.

Figure 1.1: Post-processed image from Ocellaris, the free-surface solver that was
developed in this work. A wave crest has just passed a vertical rigid cylinder.

The two fluids studied in this work are water and air, and the interface
between them is sharp with a large difference in density across the free surface.
It is this jump in density combined with the higher-order approximating functions
that are at the very core of the included papers. This thesis does not present
novel research on free-surface capturing methods, which is an active research
field in itself (see section 1.3), but uses a simple VOF method that can represent
sharp density transitions to ensure that the method is not stable due to using a
smoothed density field, but handles the exact physical surface sharpness (goal 2).

Methods for locating the free-surface in space and time—and hence for
dividing the computational domain into air and water sub-domains—are often
based on transport of scalar fields, either indicator functions (VOF) or distance

3

1. Introduction

functions (level set). These transport equations requires a divergence free
convecting velocity. Any error in mass conservation will not only cause a small
error in the velocity field, but will often cause the free surface to move away from
its true position, and hence change the geometry of the sub-domains and cause
a factor-1000 error in the density field near the free-surface. Mass conservation
is hence much more important for free-surface flows than for flows where scalar
transport errors are not strongly linked back to the solution of the fluid flow
equation. This is the major reason for requiring exact mass conservation (goal 3).

1.3 Method selection

This section describes how the goals from the problem statement above has lead
to the selection of the DG FEM solver used in this thesis. Some of the choices
below follow directly from the problem statement, for others prior experience
and research interests has guided the selection. More details on some of these
topics are also given in the literature review that follows.

Complex geometry The intention of the project is to study the interaction
between the free-surface and rigid structures present in the wave zone. These
structures may be irregular in shape, so a regular mesh can only be used if
combined with a method that allows irregular shapes to be embedded without
conforming to the mesh, such as the immersed boundary method (Peskin 2002).

Using a regular mesh would have obvious benefits. Cell-based methods can
often be more efficient, since the cell-wise matrices are identical for all cells, and
often the regular structure can lead to super-convergence (Guillén-González and
Tierra 2012). Very-high-order global spectral methods can also be employed,
and stabilisation of spectral methods towards shocks such as the jump in density
at the free surface do exist, see e.g. Tadmor (1990). Such methods do not easily
allow hp-adaptivity, which is one reason that a cell-based unstructured mesh
was chosen as the method to proceed with.

Higher-order finite difference or finite volume methods are typically also used
on regular meshes. A large body or research is dedicated to stable ways to
capture shocks and avoid unphysical oscillations, e.g. WENO methods (X.-D.
Liu, Osher, and T. Chan 1994; Shu 2003). Such methods have multi-cell stencils
which are more complex to integrate with unstructured meshes, but it is possible
(Friedrich 1998; Hu and Shu 1999), though non-periodic boundaries are more
problematic than for DG methods where multi-cell stencils are not needed.

Anticipating that implementing an immersed boundary method would need
more attention than an unstructured mesh method, and pull focus away from
the original goals, the more traditional unstructured mesh approach was selected
for this work. This choice does not preclude using a very regular mesh in parts
of the domain, but we chose to not go further with global spectral methods or
multi-cell stencil methods.

4

Method selection

Incompressible flow This restriction is important for the selection of a linear-
algebra method. Explicit methods can be used for efficient simulation of the
compressible Navier–Stokes equations (Hindenlang et al. 2012; Luo et al. 2010),
but by requiring a divergence-free velocity field the option to use an explicit
solver is no longer possible, and the numerical method must hence use an implicit
linear-algebra solver. An exception from this could potentially be methods that
use an exactly divergence-free basis for the velocity, allowing the pressure to be
eliminated, but constructing a pointwise and globally divergence free basis is
not easily done without an elliptic solve, see e.g. Fu (2019). Another option, not
taken here, is to include artificial compressibility, see e.g. Bassi et al. (2006) and
Bassi et al. (2007).

Exact mass conservation A solver for the incompressible Navier–Stokes
equations can be formulated with most discretisation methods, but exact incom-
pressibility requires specific choices. A standard continuous Galerkin FEM can,
in general, only become exactly incompressible in the limit of infinitesimally
small elements.

Several element types may be used to achieve an exactly divergence-free
velocity field. While standard continuous Galerkin methods (CG) will not work,
there are many available options that can provide exact mass conservation when
used appropriately, e.g. Crouzeix–Raviart, Scott–Vogelius, Raviart–Thomas and
Brezzi–Douglas–Marini (Galvin et al. 2012; Kirby, Logg, et al. 2012). Evans
(2011) presents a B-spline-based discretisation that provides pointwise divergence
free velocities and uses DG methods to discretise non-regular domains by joining
together multiple B-spline patches.

It should be noted that the goal is to study incompressible two-phase flow
where the velocity field is continuous. Discontinuous methods are used primarily
to ensure exact incompressibility, not to resolve shocks. Mimicking the true
solution is of course also a possible use of discontinuities in numerical methods,
see the discussion on extended finite element methods (XFEM) below.

The discontinuous Galerkin FEM method was selected as the most promising
method due to the option to obtain exact incompressibility, ease of higher-order
discretisation, and the relative wealth of recent research this method.

High Péclet numbers The cell Péclet number gives the relation between the
advection and the diffusion in a computational cell, Pec = Uh

ν , where U is the
magnitude of velocity in the cell, h is the characteristic length of the cell and ν
is the kinematic viscosity of the fluid. Since the kinematic viscosity is very low
for air and water, and similarly small computational cells (in terms of h ≈ ν)
are not achievable, it is common to have Pec � 1.

High Péclet numbers require stabilisation in continuous Galerkin methods.
A common method is the Streamline Upwind Petrov–Galerkin (SUPG) stabili-
sation method. Discretisation methods using fluxes, such as finite volume and
discontinuous Galerkin methods, can be directly implemented with upwind-

5

1. Introduction

dominated fluxes, which stabilise high-Péclet-number flows (Brooks and Hughes
1982; Hughes 1987).

Free surface location The free surface position can either be explicitly fol-
lowed by tracking the location of points on the free surface through time (surface
tracking), or recreated from a field representation (volume tracking/surface
capturing). For an introduction, see Scardovelli and Zaleski (1999). There are
also methods such as SPH were the water sub-domain is given by the position of
points tracking one of the fluids, though such methods are typically low order
(Bøckmann, Shipilova, and Skeie 2012; Monaghan 1994).

Due to the intended use of the solver to study surfaces undergoing large
topological changes, such as overturning waves, the interface tracking methods
were not investigated. Tracking the geometry of the surface through such changes
requires very careful handling of self-intersection and surface break-up due to
bubble entrainment or spray. As this aspect was not at the core of the research,
the more widely used volume tracking/surface capturing methods were preferred,
as they are easy to make robust with regard to topological changes.

Among the volume methods, the two most popular methods are the level-
set method method (Osher and Sethian 1988; Sussman, Smereka, and Osher
1994) and the volume-of-fluid (VOF) method (Hirt and Nichols 1981; Noh and
Woodward 1976; Youngs 1982). The level set method does not, in its simplest
form, preserve mass, while algebraic VOF methods preserve mass by default, but
provide worse estimates of surface curvature. Several methods combine the two
to provide both mass conservation and better local descriptions of the surface
(Olsson and Kreiss 2005; Sussman and Puckett 2000; van der Pijl et al. 2005),
or combine level set with particle methods to achieve the same (Enright et al.
2002).

In current state-of-the-art maritime-industry CFD codes the algebraic VOF
methods HRIC (Muzaferija et al. 1998) and CICSAM (Ubbink 1997) are almost
universally used. The exception is OpenFOAM which uses a similar algebraic
VOF method, MULES (H. G. Weller 2008), though geometric VOF methods
are also supported (Roenby, Bredmose, and Jasak 2016). The selected method
for this work has been HRIC. As the intention has not been to advance the
field of interface capturing; using a known, robust, and simple method seemed
advantageous compared to implementing a newer and more complex, but poten-
tially more accurate method. See also the related discussed in the section on
suggestions for further work (page 142).

Free surface description This topic relates to how the free surface is treated
in the Navier–Stokes solver after the location has been determined by a surface
capturing method. There are two main choices, one can let the mesh conform to
the free surface, or have the free surface embedded in the mesh, cutting through
mesh cells at arbitrary positions.

The first option, letting the mesh conform to the free surface, increases the
mimetic properties of the method, since the gradient of the pressure has a sharp

6

Method selection

change at the free surface, and the density and viscosity fields are discontinuous
here. On the other hand, as discussed above, moving the mesh with the motion
of the free surface becomes highly non-trivial when the topology of the air
and water sub-domains can change significantly by phenomena such as wave
over-turning, air-bubble capture, or water spray. Moving the mesh is typically
done by the Arbitrary Lagrangian–Eulerian (ALE) method (Hirt, Amsden, and
Cook 1974).

An option that allows resolving the discontinuity, while keeping the mesh
static, is to use a numerical method that augments the approximating functions
in the cells intersected by the free surface—adding local functions that resolve
the jump at its exact location. These methods are know as XFEM (Chessa and
Belytschko 2003; Groß and Reusken 2007; Heimann et al. 2013; Moës, Dolbow,
and Belytschko 1999). Such extended finite element methods may also provide
possibilities for resolving jumps without lowering the approximation order near
the discontinuity, especially if the interface cells can be cut by higher-order
polynomials which resolve the free surface without requiring a large increase in
the number of elements.

The method employed in this thesis uses a static mesh and does not try to
resolve the free surface discontinuity at the sub-grid level, though that is a very
interesting future possibility discussed in Paper IV.

Sharp free surface The jump in the coefficients of the momentum equations,
especially the factor-1000 jump in the density between air and water, causes
instabilities due to the Gibbs-phenomenon, which causes un-physical wiggles to
appear in the velocity field near the free surface. Although the velocities are
continuous, the momentum is not, and this discontinuity will quickly cause an
instability in the convective operator that blows up and destroys the solution.
This is the topic of Paper I, and is also described in the introductory sections 1.6
and 1.7.

This (non-linear) instability can be solved by adding non-linear viscosity
to the equations (VonNeumann and Richtmyer 1950), lately made popular by
methods such as the entropy-viscosity method (Guermond, Pasquetti, and Popov
2011), which work for both cell-based FEM and global spectral methods. These
methods include the artificial viscosity as a part of the linear equations themselves.
In general the artificial viscosity methods require equation-specific analysis to
determine the required viscosity. A popular alternative is to stabilise the solution
process by applying a post-processing filter after the un-stabilised equations
have been solved. The filter’s job is to remove any un-boundedness, and hence
stabilise the time-stepping procedure so that wiggles are not allowed to grow
over time. The most common methods are spectral filtering and slope-limiting,
see e.g. Michoski et al. (2016) for a comparison of artificial viscosity, spectral
filtering and slope limiting.

The method used in this work is based on a element-wise slope-limiting
filter. Having the filter be per element greatly simplifies the implementation
and using a post-processing filter instead of modifying the weak form of the

7

1. Introduction

governing equation allows decoupling the stabilisation from the equation itself.
A Navier–Stokes solver very easily becomes a large piece of tightly coupled code,
and when it is possible to enforce some separation of the individual pieces, that
is a significant benefit in terms of limiting complexity and being able to try
different combinations of methods to find one that suits the individual problem
to be solved.

Numerical framework Testing new numerical methods typically requires an
actual implementation of the method in computer code to be able to run
numerical tests, as it is often hard to analytically show that the method will
work, especially for non-linear equations with non-linear instabilities such as the
Gibbs phenomenon at the free surface in two-phase Navier–Stokes flow.

One popular way to test a numerical method is to create a proof-of-concept
implementation in an easy-to-use programming language like Matlab or Python,
and test on small 1D or 2D examples where speed and parallel MPI solution
is not crucial. One can of course also code the method in a high performance
way, by linking to fast distributed linear algebra libraries such as PETSc (Balay
et al. 2018) or Trilinos (Heroux and Willenbring 2003) and implementing the
assembly routines in an optimized way (Cython/numba, C, C++, Fortran, Julia
etc). FEM frameworks such as DEAL.II (Bangerth, Hartmann, and Kanschat
2007) can do most of this work for you, so that you can code only the matrix
assembly inner loops, and let the framework handle the mesh, linear solver and
visualisation output from the solver.

FEniCS is an advanced framework which allows the developer of a FEM solver
to write the definition of the weak form to be discretised in the Unified Form
Language (UFL), which is very close to the mathematical syntax one would write
with pen and paper (Alnæs 2012; Alnæs et al. 2014). The developer can then
select exactly how this should be converted into code that assembles local element
matrices, by selecting everything from element geometry (triangle, quadrilateral
etc), dimension (1D/2D/3D), quadrature degree, approximating polynomials, etc.
The FEniCS Form Compiler (FFC) takes the mathematical UFL description and
automatically generates optimized element-assembly code, without the developer
having to spend time chasing off-by-one and plus/minus sign errors in dense
numerical code (Kirby and Logg 2006; Logg, K. B. Ølgaard, et al. 2012; K.
Ølgaard, Logg, and G. Wells 2008; K. B. Ølgaard and G. N. Wells 2010). FEniCS,
through the dolfin library, also integrates with mesh partitioners, MPI libraries,
PETSc solvers, Paraview XDMF output for visualisation and provides many
other conveniences (Logg, Mardal, and G. Wells 2012). In summary, FEniCS
allows fast iteration which allows testing different weak forms and numerical
approaches to solve a given problem without having to be stuck writing and
debugging optimised assembly and quadrature code every time a change is made.

The selected method This selected method is using element-local Lagrange-
polynomial approximating functions in a discontinuous Galerkin setting with a
sparse implicit linear-algebra solver. The reason for picking a DG method follows

8

Literature review

from the support for higher-order elements on unstructured meshes, support for
exact incompressibility and stability at high Péclet numbers. As described above
the free surface capturing method is a simple algebraic VOF method, HRIC. A
literature review of similar methods is presented in the following section.

The choice of Lagrange polynomials is partly due to the fact that they are
well supported in FEniCS, and also that they are easy to work with for custom
post-processing (e.g. slope limiting) and visualisation. The Ocellaris solver
used in this work (www.ocellaris.org) did itself end up as a small framework for
testing different parts of the method, but it is fully dependent on FEniCS for
the underlying functionality that is used to discretise and solve the governing
equations.

1.4 Literature review

The following sections give a brief history of the development of numerical
methods for solving the incompressible Navier–Stokes equations with a focus on
free-surface flows and discontinuous Galerkin finite element methods, though
other topics are mentioned where considered relevant. A section on selected
recent publications on these topics is included at the end.

1.4.1 Free-surface flow

Numerical solution of the viscous free-surface flows started with the marker-and-
cell (MAC) method by Harlow and Welch (1965), an Eulerian method based on
finite differences for the field solvers and marker particles to track the location
of the fluid and hence the free surface. The domain was divided by the free
surface into fluid and void. Explicit boundary condition where applied at the
free surface to account for the lack of a lighter fluid on top. The MAC method
was soon used and extended by several researchers, e.g. R. K.-C. Chan and
Street (1970a) and R. K.-C. Chan and Street (1970b) who used a surface-heigh
function to separate fluid and void, and were able to accurately track a traveling
solitary wave. A version of the MAC framework was used by Nichols and Hirt
(1975) to simulate free-surface flow around bodies, now locating the interface
between fluid and void by using volume tracking (VOF). The volume tracking
methodology also enabled using a light fluid and a dense fluid together, to avoid
applying free surface boundary conditions.

Purely Lagrangian methods for free-surface flows where also developed,
though such methods have obvious problems with large mesh deformations as
the vertices follow the flow (Brennen and Whitney 1970; Hirt, Cook, and Butler
1970). Lagrangian methods enabled using the finite element method for free
surface flow calculations (Nickell, Tanner, and Caswell 1974). Soon after the
arbitrary Lagrangian–Eulerian (ALE) method by Hirt, Amsden, and Cook (1974)
solved many of the problems inherent in purely Lagrangian methods as the mesh
deformation could now be controlled independently of the fluid-particle velocities.

The ALE method can be used for the study of realistic free-surface flows,
giving satisfactory results as long as there is no surface overturning or other

9

https://www.ocellaris.org

1. Introduction

topological changes (Braess and Wriggers 2000; Huerta and W. K. Liu 1988;
Hughes, W. K. Liu, and Zimmermann 1981; Ramaswamy and Kawahara 1987).
In addition to viscous methods, similar finite element methods for inviscid free-
surface flows with moving meshes in potential theory applications were also
developed (Cai et al. 1998; Eatock Taylor 1996; Ma and Yan 2006; Robertson
and Sherwin 1999), though these do not have a time dependency in the bulk,
only on the free surface, due to solving the Laplace equation.

1.4.2 DG FEM for incompressible flow

A discontinuous Galerkin methods for incompressible flow was first presented by
Baker, Jureidini, and O. A. Karakashian (1990), who used piecewise solenoidal
approximating functions to solve the Stokes equation. They used an interior
penalty (IP) method to enforce continuity on the internal facets. This was
extended to the Navier–Stokes equations by O. Karakashian and Katsaounis
(2000). An interior penalty method was also used by Hansbo and Larson (2002)
for the Stokes problem and in Girault, Rivière, and M. Wheeler (2005) for
the Stokes and Navier–Stokes equations. J.-G. Liu and Shu (2000) solved the
Navier-Stokes equations with discontinuous elements for the vorticity, but a
continuous stream-function.

Cockburn et al. developed the local discontinuous Galerkin (LDG) method
for the Stokes equation in Cockburn, Kanschat, Schötzau, and Schwab (2002),
extended this to the Oseen equations in Cockburn, Kanschat, and Schötzau
(2004), and finally to the Navier–Stokes equations in Cockburn, Kanschat, and
Schötzau (2005). This thesis is based on the method from 2005, but uses the
symmetric interior penalty (SIP) method for the elliptic term rather than LDG,
similar to what is described in Cockburn, Kanschat, and Schötzau (2007) and
Shahbazi, Fischer, and Ethier (2007). See also Schötzau, Schwab, and Toselli
(2003a) and Schötzau, Schwab, and Toselli (2003b) for early uses of IP methods
for the Stokes problem.

1.4.3 Slope limiters in DG FEM

Slope limiters for DG FEM were introduced for explicit methods by Chavent
and Cockburn (1989). They improved the stability of an existing DG method
by Chavent and Salzano (1982), and were able to prove that the slope-limited
method was total variation bounded under a CFL restriction, greatly expanding
the usefulness of DG methods for convection-dominated problems. This idea was
later expanded into the very successful Runge–Kutta (RKDG) based methods
for explicit problems, starting with the presentation of the first slope-limited DG
method that preserved the accuracy near maxima in Cockburn and Shu (1991).

1.4.4 Recent developments

While the above sections show the beginnings of the fields on which this thesis
builds, a lot has happened in recent times. Below follows a summary of some of

10

Literature review

the relevant works in this domain from the last (roughly) 15 years. The works
have been attempted categorised, to break this review into parts. The works that
belong in multiple categories have been put into the one deemed most relevant in
the context of this thesis. It should also be noted that the focus of the selected
works is very much on incompressible flow. A lot has been done in parallel on
compressible flow, but for brevity and due to the focus on exact incompressibility
in this thesis, those works are as a rule not included.

HDG Recent work on DG FEM methods for incompressible flow include the
hybridizable DG methods (HDG), where local unknowns may be recovered as a
post-processing operator after solving a system with fewer degrees of freedom
defined only on the mesh skeleton. The reduced system is created by a lift-
ing operation, similar to static condensation. Cockburn and Gopalakrishnan
(2005a) and Cockburn and Gopalakrishnan (2005b) hybridized a velocity-vorticity
formulation of the incompressible Stokes equation and obtained an exactly in-
compressible velocity field. The following year a hybrid LDG method for the
velocity-pressure formulation was published by Carrero, Cockburn, and Schötzau
(2006). Sharp estimates for this was presented later in Cockburn, Gopalakrish-
nan, et al. (2010). In 2011, Nguyen, Peraire, and Cockburn extended their work
from the previous year on compressible flow to hybridizing the incompressible
Navier–Stokes equations. A-priori error estimates for this method were provided
by Cesmelioglu, Cockburn, and Qiu (2017). In a hp-adaptivity context, Egger
and Waluga (2013) provided an analysis of HDG methods for incompressible
Stokes flow and used both a-priori and a-posteriori error estimates to adaptively
refine meshes in two numerical convergence studies. Qiu and Shi (2016) pre-
sented a HDG method of the incompressible Navier–Stokes equations on general
polyhedral meshes, and obtained super-convergence for the velocity without the
post-processing step necessary in earlier methods. Giorgiani, Fernández-Méndez,
and Huerta (2014) developed a p-adaptive HDG method for the incompressible
Navier–Stokes equations where a local inexpensive a-posteriori error estimator
is used to obtain uniform error distribution in the domain by increasing the
polynomial degree in under-resolved cells. Rhebergen and G. N. Wells (2018)
presented a HDG method for the incompressible Navier–Stokes equations that
is pointwise divergence free and H(div) conforming with both velocities and
pressures defined on the facets in the hybrid function space. This new method is
mass and momentum conserving, energy stable and pressure robust.

Space-time DG The space-time discontinuous Galerkin methods, where DG
discretisation is used also for the time-dimension, offers the possibility to construct
methods that are conservative in time as well as in space. The methods also make
conservation possible in mesh-refinement applications where the treatment of non-
matching interfaces can be used in the time-domain. J. J. W. van der Vegt and
van der Ven (2002) presented a space-time DG method for the compressible Euler
equations. This method is extended in Klaij, J. J. W. van der Vegt, and van der
Ven (2006) to viscous flow. Pesch and J. J. W. van der Vegt (2008) also studied

11

1. Introduction

the Euler equations, but extends the method to incompressible flow. Rhebergen,
Cockburn, and J. J. van der Vegt (2013) presents a space-time discontinuous
method for viscous incompressible flow. A method for solving the incompressible
Navier–Stokes equations with a space-time discontinuous method is also provided
by Tavelli and Dumbser (2015) and Tavelli and Dumbser (2016), this time on
staggered unstructured meshes using isoparametric elements. Staggered meshes
for space-time calculations are also used by Fambri and Dumbser (2017), this
time with a focus on adaptive mesh refinement. In Fambri (2019) this method is
combined with a sub-cell slope limiter to resolve shocks.

Solution methods Solving the Navier–Stokes equations in an efficient manner
often involves projection or splitting methods to enable fast time-stepping of
segregated velocity and pressure solvers. Girault, Rivière, and M. F. Wheeler
(2005) presents a DG version of the fractional-step method by Blasco, Codina,
and Huerta (1998). Persson and Peraire (2006) studied low-memory solution
of the LDG discretisation of the compressible Navier–Stokes equations using
products of structured matrices to represent the unstructured discretised operator
matrices, and used the Newton-method to handle the non-linearity. Hesthaven
and Warburton (2008) and later Ferrer and Willden (2011) show how the
classic pressure-correction method by Karniadakis, Israeli, and Orszag (1991)
can be implemented in a DG setting. Botti and Di Pietro (2011) presents a
pressure-correction scheme for discontinuous velocities and continuous pressures
that is LBB stable for equal-order discretisations. Kopecz (2012) show how
a splitting method presented in Turek (1999) can be used with a DG FEM
discretisation. In Klein, Kummer, and Oberlack (2013) the classic SIMPLE
algorithm is extended to DG FEM and the applicability of the DG SIMPLE
method is shown in several numerical experiments. Steinmoeller, Stastna, and
Lamb (2013) implement a standard differential pressure-correction scheme for the
DG discretisation of the incompressible Navier–Stokes equations, but supplement
the solution procedure with a local cell-wise projection into an exactly solenoidal
vector function space, and hence obtain exact incompressibility. Lehrenfeld
and Schöberl (2016) contribute an operator-split solution method for the HDG
discretisation of the incompressible Navier–Stokes equations. Pandare and Luo
(2016) do the same with a pressure-correction method for a (reconstructed)
discontinuous velocity and a continuous pressure, and satisfy the LBB condition
with an equal-order HDG discretisation. An incremental pressure-correction
scheme for the DG solutions of the incompressible Navier–Stokes equations
that is stable for very small time-steps, where previous schemes have failed, is
presented by Emamy et al. (2017). They show numerical results indicating that
the scheme is long-term stable and accurate also for equal-order elements. Fehn,
W. A. Wall, and Kronbichler (2017) also study instabilities in pressure-correction
schemes related to small time steps, and find that even when including LBB/inf–
sup stabilising terms, there are still instabilities for equal-order discretisations.
Piatkowski, Müthing, and Bastian (2018) use a rotational incremental pressure-
correction scheme with a Raviart–Thomas post-processing procedure that gives

12

Literature review

excellent mass-conservation.

CPU-efficiency As DG methods are reaching the mainstream and are appli-
cable for many practical applications there are several researchers who work
on improving the computational performance and scalability. One very suc-
cessful avenue is the work on sum-factorised matrix-free DG methods, see e.g
Krank et al. (2017) for recent developments in their method where the wall-clock
time per time step is almost independent on the polynomial degree, thanks to
an entirely matrix-free implementation. Fehn, W. A. Wall, and Kronbichler
(2018a) focus on efficiency on under-resolved problems and demonstrate that
the wall-clock time can be reduced by an order of magnitude by smart use
of matrix-free methods. In Fehn, W. A. Wall, and Kronbichler (2018b) they
focus on using a local Lax–Friedrichs flux to stabilise under-resolved turbulent
simulations. Kronbichler and W. Wall (2018) compares continuous and discon-
tinuous methods, and find that matrix-free sum-factorised DG methods can be
almost as fast as continuous methods, and significantly faster than the hybridized
version of the DG scheme (and the statically condensed continuous scheme),
even though the number of unknowns is much larger. Kronbichler and Kormann
(2019) compares the method to the arithmetic performance of modern CPUS,
and find that it reaches 60% of the theoretical peak. Consequently, parts of the
code other than the matrix solver are starting to dominate, in stark contrast
to matrix-based methods which typically spend the overwhelming majority of
their time inside the linear-algebra solver. Fehn, Munch, et al. (2019) show
that the matrix-free methods can be combined with specially crafted multi-grid
preconditioners that, as part of the multi-grid cycle, project from DG to CG and
hence become independent of the magnitude of the penalty term, which makes
the original problem worse conditioned when the penalty is increased. Another
way to increase performance is by vectorisation and use of GPU computing, see
e.g. Einkemmer and Wiesenberger (2014).

Solenoidal elements Several researchers have been working on new elements
and other techniques targeting exactly solenoidal velocity fields. O. Karakashian
and Katsaounis (2006) use an analytically solenoidal vector function space to
represent the velocity. The same is done by Montlaur et al. (2010), but now
the system is solved first for hybrid pressures (on the mesh skeleton), and then
locally for the full pressure afterwards. A more traditional approach is taken by
Mozolevski, Süli, and Bösing (2006), who solve the incompressible Navier–Stokes
equations in the fourth-order stream-function formulation, also guaranteeing
exact incompressibility. The stream function approach is also studied by Hansbo
and Larson (2008), who test three different approaches to eliminating the pressure
from the equations. Labeur and G. N. Wells (2012) use a Lagrange-multiplier
to enforce continuity in the fluxes in a generalised hybrid DG method, and are
able to conserve both mass and momentum with fewer degrees of freedom than
standard DG methods. (Cheung et al. 2015) show a new staggered mesh method.

13

1. Introduction

They obtain local and global conservation, and a strongly divergence free velocity
field that super-converges after post-processing.

VOF Work on finite element methods used in conjunction with the volume-
of-fluid method for free-surface flows include Jeong and Yang (1998), who
use VOF to track the free surface and also to determine where to impose
boundary conditions, i.e. not solving the flow equations in the air-phase. Cervone,
Manservisi, and Scardovelli (2010) uses FEM and VOF to study a liquid spray
into a gas environment at low Reynolds numbers. Sun and Kang (2012) shows
a numerical wave tank, also with FEM and VOF, and uses this to study wave-
breaking on a sloping beach. There are also several recent publications on
combining FEM and level-set methods free-surface flow simulation, see e.g.
Tornberg and Engquist (2000), Groß, Reichelt, and Reusken (2006), Groß and
Reusken (2007), and Marchandise and Remacle (2006). There are also authors
working on improving the mass-conserving properties of level-set methods by
use of DG FEM without coupling to VOF, see e.g. Di Pietro, Lo Forte, and
Parolini (2006), Grooss and Hesthaven (2006), Karakus et al. (2016), Owkes and
Desjardins (2013), and Pochet et al. (2013).

Other Other recent advances include, e.g., penalty-free elliptic terms (Riviere
and Sardar 2014), grad–div-like stabilization (Akbas et al. 2017) and pressure-
robust solvers (Schroeder and Lube 2017; Schroeder and Lube 2018). Meshes
with non-matching interfaces (hanging nodes) at subdomain boundaries can
be very useful for (re-)meshing, increasing the resolution in sub-domains to
capture local features without re-meshing the surrounding elements to obtain
matching nodes (Girault, Rivière, and M. Wheeler 2005; Rivière and Girault
2006). Related to re-meshing, Baiges et al. (2017) uses ALE as a sub-step, after
which the solution is projected back to a fixed mesh at the end of each time step,
called fixed-mesh ALE.

14

The discontinuous Galerkin method

1.5 The discontinuous Galerkin method

This section gives an introduction to the discontinuous Galerkin finite element
method (DG FEM). This presentation will be more thorough than what is found
in the following papers, and is more suitable for beginners in the DG FEM
method. For ease of reference the nomenclature is summarised in table 1.1. Note
that there may be some minor differences between the symbols used here and
what is used later in the attached papers.

Table 1.1: Nomenclature.

Symbol Definition
D The number of spatial dimensions
N The polynomial degree of the basis functions
H The total number of elements
Ω The domain, a closed space in RD
∂Ω The boundary of the domain
T The tessellation/triangulation of Ω into H cells
h A typical cell size
�h A discretised version of �, i.e. Ωh = T
i Global index, i ∈ [1, H]
j Local index, j ∈ [1, N]
Ki A mesh cell
∂Ki The boundary of Ki

F A facet of a cell. ∂K =
⋃
Fj

nj A mesh cell node / vertex
dj A degree of freedom
φj A basis function
PN (K) The space of polynomials of order N on K
Γ All cell facets, Γ =

⋃
∂K

ΓD All external facets, the tessellation of ∂Ω
Γ0 All internal facets, Γ0 = Γ \ ΓD

Let us start with a simple approximation problem. We want to approximate a
function f on a domain Ω ∈ RD enclosed by the surface ∂Ω. The approximation
fh will be discrete, i.e. it will be possible to describe the approximation of f by
a finite number of scalar numbers, called degrees of freedom.

A triangulation—or more generally a tessellation—of the domain Ω is first
created by a suitable algorithm. A good choice is to use a software such as
Gmsh (Geuzaine and Remacle 2009). The tessellation, T , is made up of non-
overlapping cells K with boundaries ∂K. There are H cells in T and the average

15

1. Introduction

characteristic size of the cells is h. We require

lim
h→0
T = lim

H→∞

H⋃
i=0

Ki = Ω. (1)

The discrete approximation fh to the continuous function f is said to be
consistent if it approaches f as H approaches infinity,

lim
H→∞

fh = lim
h→0

fh = f. (2)

Internally in each cell K we approximate the function f by polynomial basis
functions of order N in D dimensions, fh ∈ PN (K). Each individual cell has
its own complete set of basis functions and a corresponding set of degrees of
freedom. The degrees of freedom are the weights of the basis functions. In the
discontinuous Galerkin method the basis functions only span one cell, so the
degrees of freedom are not shared among neighbouring cells. This means that
there may be discontinuities in the approximated functions across the inter-cell
faces.

Ki
nj

φj

Figure 1.2: A linear nodal basis function.

In the following text a finite element should be taken to mean the combination
of a cell, here triangles or tetrahedra, with basis functions, here discontinuous
polynomial spaces, and a way to scale the basis functions to approximate an
arbitrary function, the degrees of freedom. This is the classical definition of a
finite element by Ciarlet (1976). We define the basis functions φj(x) such that
they are unity at node nj and zero at all other nodes, see figure 1.2. This is
called a nodal basis. For each node nj in K there will be one basis function
φj and one degree of freedom dj . To form a proper finite element we require
unisolvency: if all degrees of freedom are zero then the combined scaled basis
functions must be identically zero everywhere, they are fully constrained by the
degrees of freedom.

To evaluate the value of the approximated function fh at an arbitrary location
x in T , we must first find which element Ki contains x and then calculate

f(x) ≈ fh(x) =
N∑
j=1

φj(x) dj . (3)

With a nodal basis, the value of each degree of freedom dj will be the value
of the approximated function fh at node nj . The value of the true function f

16

The discontinuous Galerkin method

at the node may be different, it is possible to select the weights dj to minimise
e.g. the L2 norm, ‖f − fh‖2L2

=
∫

Ω(f − fh)2 dx, instead of selecting to perfectly
interpolate f at the nodes. This will lead to discontinuities in fh between
elements unless the function f can be perfectly approximated by the selected
finite elements—if the function f is a polynomial of order N or lower, then the
minimum error norm ‖f − fh‖L2 will be zero and f = fh everywhere.

Let us now look at two elements in T , K+ and K−. The two elements share
a common face F , see figure 1.3. Which element is denoted K+ and which is
denoted K− is arbitrary and not related to positions of the two elements relative
to the coordinate system origin or any other systematic ordering of elements.

K+

K−

F = ∂K+ ∩ ∂K−

Figure 1.3: Two elements sharing a face.

We are interested in working with the discontinuities, or jumps, across the
shared face F in our formulation of the discontinuous Galerkin finite element
method. We define the jump J a K in a quantity a between a+ on the K+ side
and a− on the K− side as,

J a K = a+ − a−, (4)
J a Kn = a+ · n+ + a− · n−, (5)

where the outward normal vector from K+ on F is denoted n+ and equation (5)
contains dot products only if a is a vector, otherwise it is a product of a scalar
and a vector. The second operator needed to work with the discontinuities is the
average. The average value {{a}} of a on the shared face F is simply defined as

{{a}} = 1
2(a+ + a−). (6)

These definitions lead to the following identity which will be used later,

J ab K = J a K {{b}}+ J b K {{a}} . (7)

Integrals over the domain Ω are approximated as a sum of integrals over each
element, K ∈ T . This allows using integration by parts to introduce integrals
over the element boundaries. These integrals will be used to couple the unknown
in each element with the unknowns in the neighbouring elements. As a reminder,
integration by parts can be written in single and multi-dimensional form as∫ x1

x0

ab′ dx = [ab]x1
x0
−
∫ x1

x0

a′b dx, (8)∫
Ω
a · ∇bdx =

∫
∂Ω
ab · n ds−

∫
Ω
∇ · abdx. (9)

17

1. Introduction

After integration by parts has introduced facet integrals over ∂K in the
global sum, ∫

Ω
· dx =

∑
Ki∈T

∫
Ki

· dx =
∑
Ki∈T

[∫
∂Ki

· ds−
∫
Ki

· dx
]
, (10)

the sum will end up containing integrals over each internal facet twice, once
for each of the elements sharing the facet. This global sum of integrals will be
transformed into a sum over all elements, K ∈ T , a sum over all external faces,
F ∈ ∂Ω, and a sum over all internal faces, F = ∂K+ ∩ ∂K−. For computational
efficiency it is beneficial to include each entity in this sum only once—not sum
over all cells and then over each cell’s connected facets—so we will need to
describe the total contribution from the duplicated internal element boundary
integrals. This will be described in the next section by the introduction of
numerical fluxes, a key part of the discontinuous Galerkin method.

1.5.1 The advection equation

The advection equation is also known as the transport equation or the convection
equation. The equation for advection of a conserved scalar field c in a known
velocity field u with no source terms for c is

∂c

∂t
+∇ · (uc) = 0. (11)

If we restrict ourselves to an advecting velocity field that is divergence free,
∇ · u = 0, we can write

∂c

∂t
+ u · ∇c = 0. (12)

Let us convert the advection equation to its weak form by approximating
the unknown function by a DG finite element, c ∈ PN (K), multiplying with a
DG test function, v ∈ PN (K), and integrating over the domain. We can split
the integral into sub-integrals over each element. For each element we then have
the following integral, where dx means a volume integral in all the element’s D
spatial dimensions, ∫

K

∂c

∂t
v dx+

∫
K

u · ∇cv dx = 0. (13)

One obvious problem with this is that we have no equations linking the element
with its neighbours due to the discontinuous formulation. Using equation (9) on
the second integral in equation (13) with a = uv, b = c and using ∇ · u = 0 we
get ∫

K

∂c

∂t
v dx+

∫
∂K

(cu) · n v ds−
∫
K

cu · ∇v dx = 0 (14)

Now the integral over the element boundary ∂K in equation (14) can be used
to establish a link between the degrees of freedom in each element. If we look at

18

The discontinuous Galerkin method

the integral over a shared facet, F = ∂K+ ∩ ∂K−, the sum of the contributions
from K+ and K− can be written as a jump since n+ = −n−,∫

F

(c+u+) · n+ v+ ds+
∫
F

(c−u−) · n− v− ds =
∫
F

J cvu K · n+ ds. (15)

Let us use our physical intuition and require that the flux ûc is the same on
both sides of the shared facet F . This means that ûc+ = ûc

− = ûc, and we can
write the integral with only a jump in the test function v,∫

F

J cvu K · n+ ds =
∫
F

ûc · n+ J v K ds =
∫
F

(ûc · n)+ J v K ds. (16)

What remains is to decide on an appropriate flux (ûc · n)+. A strict require-
ment is that in the case where u and c are continuous across F , then the flux
must reduce to this continuous value. Otherwise, we are free to select the flux
that gives us the best combination of accuracy and stability properties. The
continuity of the flux ensures consistency of the numerical scheme, and having a
single valued flux on the shared face F ensures conservation of c, see for example
Cockburn (2003).

To start defining the flux, it will help to first define an upwind normal velocity
unU, and a downwind normal velocity unD,

unU = 1
2(u · n+ |u · n|), (17)

unD = 1
2(u · n− |u · n|). (18)

In the case where u+ is pointing outwards on F then u+
nU > 0 and u+

nD = 0 on
F . This can be used to define a flux with a blending parameter β where β = 0
gives a pure upwind flux, β = 0.5 gives a central flux while β = 1.0 gives a pure
downwind flux,

(ûc · n)+ = (1− β) J c unU K + β J c unD K . (19)

Many numerical schemes for advection exist for the case where c is a piecewise
constant function with a single value in each element. Such flux-limiting schemes
ensure stability (see section 1.6), and can be used for surface capturing (see
section 1.8). For higher-order methods it is common to use simple flux limiters,
such as a pure upwind flux, together with slope limiters to ensure stability in
the presence of shocks/jumps (see section 1.7). Pure upwind fluxes are used
in the included papers in conjunction with the slope-limiting strategy from
Paper I when using higher-order elements for advection of the velocity in the
Navier–Stokes momentum equation.

UFL implementation of advection

An implementation of an advection equation in the Unified Form Language
(UFL), used for describing weak forms in FEniCS (Alnæs 2012; Alnæs et al.

19

1. Introduction

2014), is given below, Here ds denotes integrals over the external boundary ∂Ω
while dS denotes integrals over internal faces Γ0,

Listing 1.1: Advection with blended flux in FEniCS UFL.
Upwind and downwind fluxes in direction normal to the face
flux_nU = c * (inner(vel, normal) + abs(inner(vel, normal))) / 2
flux_nD = c * (inner(vel, normal) - abs(inner(vel, normal))) / 2

Define the blended flux
The blending factor beta is continuous, so beta(’+’) == beta(’-’)
b = beta(’+’)
flux = (1 - b) * (flux_nU(’+’) - flux_nU(’-’)) \

+ b * (flux_nD(’+’) - flux_nD(’-’))

Equation to solve
eq = (c - c_prev) / dt * v * dx \

- c * inner(vel, grad(v)) * dx \
+ flux * jump(v) * dS \
+ c * inner(vel, normal) * v * ds

1.5.2 Elliptic operators

The discretisation of elliptic operators with the discontinuous Galerkin method is
not as straight forward as for hyperbolic operators such as convection. There is
no direction to diffusion, so up-winding is not possible. Instabilities arise related
to checker-boarding with very different solutions in neighbouring cells, so there
is a requirement to somehow penalise large jumps in the solution.

The symmetric interior-penalty (SIP) method by Arnold (1982) is what we
will use below to arrive at a stable weak form. This is an extension of Nitsche’s
(1971) method for constructing stable weak boundary conditions, i.e. boundary
conditions that are a part of the weak form and not strongly applied to the
matrix after assembly.

Let us start by looking at an elliptic term, ∇2c, which is multiplied by a test
function, v, before the result is integrated over the domain,∫

Ω
∇ · (∇c) · v dx. (20)

After splitting the integral into integrals over each element and then perform-
ing integration by parts, the result, for one element, is∫

∂K

v∇c · n ds−
∫
K

∇c · ∇v dx. (21)

When we sum equation (21) over all elements, the sum of integrals over an
internal facet with contributions from both ∂K+ and ∂K− is written as a jump,
similar how it was done in equation (15),∫

F

J v∇c K · n+ ds. (22)

20

The discontinuous Galerkin method

The identity in equation (7) is then applied to equation (22) giving∫
F

J v K {{∇c}} · n+ ds+
∫
F

J∇c K {{v}} · n+ ds (23)

The SIP method is used to minimise the inter-element jumps and the deviation
from the Dirichlet boundary conditions, c = g on ΓD. The constraints

J c K = 0 on Γ0 (24)
(c− g) = 0 on ΓD (25)

are enforced weakly by the introduction of the symmetric interior-penalty test
function, ṽ = κ J v K− {{∇v}} · n+, where κ is a penalty parameter which must
be sufficiently large to ensure stability. After integrating equations (24) and (25)
over the domain, the resulting two integrals are added to the weak form,∫

Γ0

J c K ṽ ds+
∫

ΓD
(c− g)ṽ ds = 0. (26)

The final stabilised weak form of the elliptic operator is symmetric due to
the choice of penalty test function. The weak form has one cell integral and
seven facet integrals,

−
∫
T
∇c · ∇v dx+

∫
ΓD

v∇c · n ds (27)

+
∫

Γ0

J v K {{∇c}} · n+ ds+
∫

Γ0

J∇c K {{v}} · n+ ds

+
∫

Γ0

J c K {{∇v}} · n+ ds−
∫

Γ0

κ J c K J v K ds

+
∫

ΓD
(c− g)∇v · nds−

∫
ΓD

κ(c− g)v ds,

where the first two lines are from integration by parts of the elliptic operator
and the next two lines stabilise the internal and external facets respectively. On
the external boundary, J v K = {{v}} = v has been used to get the last line.

It is common to use twice as much penalisation, 2κ, at the boundary facets,
F ∈ ΓD, compared to the internal facets, F ∈ Γ0. See Epshteyn and Rivière
(2007) and Shahbazi, Fischer, and Ethier (2007) for more details on selection
of the penalty parameters and Arnold et al. (2002) for an overview of other
methods to stabilise elliptic operators in DG methods. All papers in this thesis
have used the symmetric interior penalty method.

UFL implementation of diffusion

The UFL code in listing 1.2 describes the Poisson problem

−∇2c = f in Ω, (28)
c = g on ∂Ω.

21

1. Introduction

The a and L variables contain the bilinear and linear forms respectively.
The dS measure integrates over Γ0 while ds integrates over ΓD. The trial
function, c, and the test function, v, are both scalar and can be represented
by DG FEM elements, though the code will also work for continuous elements
where J c K = J v K = 0 by definition.

Listing 1.2: DG FEM diffusion with SIP in FEniCS
The interior of the domain
a = dot(grad(u), grad(v)) * dx
L = f * v * dx
a -= dot(n(’+’), avg(grad(c))) * jump(v) * dS
a -= dot(n(’+’), avg(grad(v))) * jump(c) * dS
a += kappa * jump(c) * jump(v) * dS

Dirichlet boundary conditions
a -= dot(n, grad(c)) * v * ds
a -= dot(n, grad(v)) * c * ds
L -= dot(n, grad(v)) * g * ds
a += 2 * kappa * c * v * ds
L += 2 * kappa * g * v * ds

1.6 Convective stability in piecewise constant
methods—flux limiters

Convective stability in low-order methods can be ensured by the use of a flux
limiter. This limiter stabilises the average value in each cell, which is sufficient
for convective stability in numerical methods that approximate the convected
value by piecewise constant functions. Low-order finite volume methods and
the lowest-order discontinuous Galerkin method are common examples of such
methods. To follow the flux-limiter literature, we will here study the transport
of a scalar function φ from a central cell KC to a downwind cell KD by the
convecting velocity u. The cells are separated by the facet F . Upwind of the
central cell there is an upwind cell KU. A sketch is shown in figure 1.4.

u

KU KC KD

F

Figure 1.4: Upwind, central and downwind cells.

A situation where the scalar function φ is increasing from KC to KD is shown
in figure 1.5. The convective-boundedness criterion (CBC) by Leonard (1979)
can be used to ensure convective stability. The CBC has two requirements for
convective stability: (i) the value of φ must change monotonically between cells,
and (ii) the flux must be pure upwind when φC is a local extremum in relation

22

Convective stability—flux limiters

to φU and φD. The first criterion is directly linked to avoiding boundedness
problems, as a reconstructed value between two known cell-average values must
be bounded by the neighbouring cell averages. If the flux over- or under-shoots
the neighbouring values this could create a new global minimum or maximum,
violating global boundedness and potentially leading to negative densities or
other obviously unphysical results. The second criterion selects the most diffusive
flux near existing local maxima. Using a diffusive flux will in make sharp peaks
smoother and lower, combatting unphysical spikes. Recent work by e.g. Ping-Li,
Wen-Quan, and Mao-Zheng (2003) and Yu et al. (2001) confirms that the first
criterion in sufficient and necessary, but has questioned whether the second
criterion is only sufficient, but may not in fact be necessary, and as such less
diffusive fluxes can be chosen. However, Chourushi (2019) indicates that such
extensions in the non-monotonic range “gives rise to loss of numerical stability
for convection dominated fluid flows”.

Here we present the original CBC as explained in the two criteria above. See
also Gaskell and Lau (1988) for a detailed discussion of the CBC. Only the first
requirement is relevant in the case shown in figure 1.5, which implies that any
choice of flux satisfying φC ≤ φF ≤ φD will be stable. If we had φU > φC in
figure 1.5 then φC would be a local minimum, and we would have to require
φF = φC.

φ

x

u

φU φC φD

φF

Figure 1.5: The function φ at cell centers and at the facet F .

To construct a stable flux limiter according to the CBC, let us first introduce
the normalised quantities φ̃C and φ̃F ,

φ̃C = φC − φU

φD − φU
, (29)

φ̃F = φF − φU

φD − φU
. (30)

The flux φF can be computed by combining the normalised expressions in
equations (29) and (30) and eliminating φU,

φF = (1− β̃)φC + β̃φD, (31)

23

1. Introduction

where β̃ can be interpreted as a downwinding factor,

β̃ = φ̃F − φ̃C

1− φ̃C
. (32)

Setting φ̃F = 1 gives β̃ = 1 and a pure downwind flux. Taking φ̃F = φ̃C
results in β̃ = 0 and a pure upwind flux. The normalised-variable diagram (NVD)
by Leonard (1988) in figure 1.6 shows a shaded region where the facet value φF
satisfies the CBC. For φ̃C /∈ [0, 1] only the upwind scheme is stable, while for
φ̃C ∈ [1, 0] it is possible to blend the upwind scheme and the downwind scheme.

φ̃F

φ̃C1

1

Upwind

Downwind

Figure 1.6: Normalised Variable Diagram.

Higher-order DG methods can give higher-order spatial convergence even with
a pure upwind flux, due to the non-constant approximating polynomials inside
each cell. Piecewise-constant methods can also give higher-order convergence
with an appropriate flux. A convection scheme that passes through the point
(0.5, 0.75) in the normalised variable diagram with a finite slope will be at least
second-order, it will be third-order if the slope is 3

4 at this point (Leonard 1988).
As can be seen, neither the upwind nor the downwind schemes marked in the
figure are second-order.

An alternative diagram to classify convection schemes is the Ψ-r diagram
by Sweby (1984) shown in figure 1.7. The Sweby diagram is often used to
describe the total-variation-diminishing (TVD) schemes that have the property
that they do not increase the total variation from one time step to another. For
a discretised scalar function φ, the total variation is defined as

TV(φ) =
Nelem∑
i=0
|φi − φi−1|, (33)

where e.g. φi = φC and φi+1 = φD.
Sweby defines the face value φF and the upwind-to-downwind ratio r as

φF = φC + 1
2Ψ(r)(φD − φC), (34)

r = φC − φU

φD − φC
. (35)

24

Convective stability—flux limiters

Ψ

r

1 2 3 4 5

1

2

Figure 1.7: The Sweby (1984) diagram. The light-shaded region is the TVD
region while the dark-shaded is the second-order TVD region. The dashed line
is a second-order TVD scheme by van Leer (1974), see equation (38).

It can easily be seen that Ψ(r) = 0 corresponds to an upwind scheme, while
Ψ(r) = 2 corresponds to a downwind scheme. Leonard (1991) gives the relations
between NVD and the TVD diagram,

Ψ = φ̃F − φ̃C
1
2 (1− φ̃C)

, (36)

r = φ̃C

1− φ̃C
. (37)

Leonard (1991) also shows that the TVD region of the normalised-variable
diagram is the part of the shaded region in figure 1.6 that falls below φ̃F = 2φ̃C.
This region is shown in figure 1.8. Constructing a stable flux limiter is now a
matter of describing a continuous single-valued function in the CBC diagram
that goes from the origin and up to (1, 1). If the function stays inside the
TVD region it will satisfy both the CBC and the TVD criteria. A second-order
TVD convection scheme should smoothly blend between upwind and downwind
schemes in such a way that it stays within the TVD region and passes through the
“second-order” point (0.5, 0.75) with a finite slope. One much used second-order
flux limiter is the scheme by van Leer (1974). The van Leer flux limiter is shown
in figures 1.6 and 1.8, and the expression for the line is

Ψ(r) = r + |r|
1 + r

. (38)

As can be seen from the figures, the TVD region falls inside the CBC region
and the CBC criterion is more general than the TVD criterion in terms of
the local boundedness (Jasak 1996). See, e.g. Jasak, H. Weller, and Gosman
(1999) for information about using the TVD and NVD diagrams to create stable
convection schemes on general unstructured meshes.

25

1. Introduction

φ̃F

φ̃C1

1

Figure 1.8: Leonard’s normalised-variable diagram showing the TVD region and
the van Leer (1974) scheme as an example of a second-order TVD scheme.

1.7 Convective stability in higher-order DG
methods—slope limiters

The first step to constructing a non-linearly stable higher-order convection
scheme is to ensure linear convective stability by selecting an approximate flux.
Using a stable flux—such as a pure upwind flux—ensures that the cell averages
satisfy the convective-boundedness criterion, CBC.

Higher-order shape functions inside each cell can lead to non-monotonic
solutions between two cells, breaking the local maximum principle (Cockburn
and Shu 1989). In figure 1.9 the highlighted cell has a cell-average value that is
in between the cell averages of the neighbouring cells, but the local polynomial
breaks the maximum principle by being outside the bounds created by the
maximum and minimum of the local cell averages. The dotted line shows the
maximum slope in the cell that satisfies the local maximum principle.

Figure 1.9: A linear function which breaks the local maximum principle.

Methods such as spectral filtering, explicit slope-limiting projections, or
adding implicit non-linear diffusion to the weak form can be used to avoid
overshoots and force the unknown function to observe the maximum principle.
Michoski et al. (2016) provides a comparison of these methods. Explicit slope
limiting is the method that has been used in the papers included in this thesis.
The implementation details on using slope-limiting methods for solenoidal vector
fields such as the fluid velocities is the main topic of Paper I, and the methods

26

Convective stability—slope limiters

explored there are also used to run realistic 3D two-phase flow simulations in
Paper III. These papers show that without slope limiting the simulations blow
up almost immediately. With correctly implemented slope limiters there have
been no convective stability problems in any of the two-phase benchmark tests.

A slope limiter is a post-processing projection that removes violations of the
maximum principle while leaving smooth areas with no such violations alone,
thus keeping the overall high-order convergence rate of the numerical method.
The limiter is applied to the solution of the discretised version of the weak
problem. Solving the weak problem is a linear, possibly linearised, operator,
while the slope limiter is a fully non-linear operator that acts directly on the
degrees of freedom (DOFs) in each cell. In the 1D case shown in figure 1.9, a
slope limiter will typically produce the same function values, except for replacing
the DOFs in the highlighted cell by those shown in the dotted line.

The slope-limiting strategy in 2D and 3D used in the included papers is very
similar to what is described for 1D above. A linear function can be recast as
a mean value plus the derivatives in each of the axis directions. By using this
Taylor-polynomial approach, the slopes can be limited such that all the vertex
values are bounded by the mean value in the connected cells. For the central
vertex shown in figure 1.10, the cell averages of the grey cells will be used to find
the maximum and minimum allowable value at the vertex. The approximated
function will be multi-valued at the vertex, since all the connected cells have
separate DOFs here, but all the individual DOF values will be in the allowable
range after slope limiting.

Figure 1.10: Vertex cell neighbours in a 2D triangulated mesh.

For higher-order derivatives, the mean lower-order derivatives in the sur-
rounding cells can be calculated and the same procedure can be used (Kuzmin
2010). This works well inside the domain, especially combined with the criterion
that low-order derivatives, or the function values themselves, shall not be limited
if the higher-order derivatives are within bounds. This allows smooth extrema
where the derivative is within the bounds of the neighbouring cells while the
function itself is not.

The main challenge with using slope limiters is related to the handling
of boundaries. To demonstrate this, assume that the unknown function has
Dirichlet boundary conditions at a wall, and that the first derivative of the
function looks like what is shown in figure 1.11. Since the value of the derivative
is not known at the boundary—this would require us to specify both Dirichlet and
Neumann boundary conditions on the same facet which is not reasonable—the

27

1. Introduction

slope limiter must remove the second derivative near the wall. This is the only
way to ensure that the local maximum principle is kept for the first derivative
without additional knowledge about what would be a physically reasonable value.

The lack of neighbours at boundaries is a fundamental problem with the
method, so some loss of accuracy must be expected near the boundaries unless
more advanced wall handling is included in the method (see also the appendix,
page 161). If the numerical method used immersed boundaries then "ghost"
cells inside the wall could provide neighbour information to the boundary cells.
Another option would be to use sub-cell meshes for boundary cells that require
limiting, i.e. running a low order method on a refined mesh in the boundary
cells to find a physically valid solution (Dumbser and Loubère 2016). No such
special treatment of boundaries has been added in the slope limiter for the work
presented in this thesis.

Figure 1.11: The first derivative of a function near a wall. The thick lines shows
the linear DG approximation of the first derivative, and the dashed line shows
the analytical first derivative. The dotted line shows the slope-limited solution
near the wall which keeps the average first derivative, but removes the second
derivative completely.

28

The volume-of-fluid method

1.8 The volume-of-fluid method

In this thesis the two-phase air/water density field is approximated by a piecewise
constant function space. The volume-of-fluid (VOF) method by Hirt and Nichols
(1981) is used for evolving this density field in time while maintaining a sharp
interface. In the VOF method a transport equation for the fluid density is solved
for a normalised indicator function called the colour function, c ∈ [0, 1], which is
linearly related to the density. The true density field can be recovered from the
indicator function c when the density of the two fluids are known, e.g.

ρ = c ρwater + (1− c)ρair. (39)

Among the most commonly used VOF methods are the algebraic VOF
schemes CICSAM (Ubbink 1997) and HRIC (Muzaferija et al. 1998). Geometric
VOF schemes, where the interface is reconstructed by geometrical primitives
in each cell, are also popular (Hirt and Nichols 1981; Roenby, Bredmose, and
Jasak 2016; Youngs 1982), and mass-conserving level-set methods, which often
couple a VOF method with the level-set equation to ensure mass conservation,
are actively developed (Olsson and Kreiss 2005; Sussman and Puckett 2000;
Touré, Fahsi, and Soulaïmani 2016).

In the following papers the algebraic VOF method HRIC has been used. In
algebraic VOF methods the facet fluxes in the transport equation for the colour
function are modified such that a donor cell on the free surface, e.g. the shaded
cell in figure 1.12, must fully fill before it can transport any of the colour function
to the cell above. This avoids diffusing the interface, which would happen if the
upwind scheme was used and the donor cell colour 0.5 was transported across the
top facet of the shaded cell with the facet velocity. An algebraic VOF scheme is
nothing but a flux limiter (section 1.6) that minimises diffusion.

0.5 1.0 1.0 1.0 1.0 1.0

0.0 0.5 1.0 1.0 1.0 1.0

0.0 0.0 0.3 0.6 0.4 0.2

u

Figure 1.12: A colour-function field in the volume-of-fluid method.

High Resolution Interface Capturing—HRIC

The HRIC scheme by Muzaferija et al. (1998) calculates the flux of the colour
function across a facet, cF , based on a CBC-compliant scheme (see section 1.6).
The downwind contribution to the facet flux is maximised, which contributes to
sharpening the interface. As can be seen in figure 1.13, the HRIC scheme follows

29

1. Introduction

the upper boundary of the TVD region in the normalised variable diagram,

c̃F =


c̃C if c̃C /∈ [0, 1]
2c̃C if c̃C ∈ [0, 1

2]
1 if c̃C ∈ [1

2 , 1].
(40)

Equation (40) is the same as the HYPER-C scheme by Leonard (1991) with
Courant number equal to 0.5. The C in HYPER-C is for compressive, and
Leonard shows that the heavily downwind-biased HYPER-C scheme will reduce
all gradients to step functions. The VOF interface we seek is indeed a step
function, but the problem with heavy sharpening is that it will align the free
surface with the mesh. The true free surface is not, in general, aligned with the
mesh. Too heavy sharpening causes stair-casing and unphysical wiggles of the
interface (Ubbink 1997).

c̃F

c̃C1

1

Figure 1.13: The HRIC scheme shown in the normalised-variable diagram.

In the HRIC scheme, the problem with downwind-sharpening causing align-
ment of the interface to the mesh is mitigated by allowing some diffusion when
the angle θ between the facet normal nF and the interface normal nc is large.
The diffusion is introduced by blending with the upwind value,

c̃∗F = γnc̃F + (1− γn)c̃C, γn =
√

cos(θ). (41)

Equations (40) and (41) may cause convergence problems if the Courant
number Co is large. Even the original HYPER-C scheme—which is designed to
be as close to the downwind scheme as possible while still being bounded—is
less compressive than equation (40) for Courant numbers higher than 0.5. A
Courant number dependency is therefore introduced,

c̃∗∗F =


c̃∗F if Co < 0.3
c̃C + (c̃∗F − c̃C) 0.7−Co

0.7−0.3 if 0.3 < Co < 0.7
c̃C if Co > 0.7

(42)

30

References

Having calculated c̃∗∗F , we can use equation (32) to calculate β and this can
be used to formulate the DG FEM flux in equation (19) when assembling the
transport equation for c.

One issue with using methods based on Leonard’s normalised-variable diagram
to calculate β is the dependency of c̃C on cU. On a general unstructured mesh the
upstream cell value is not necessarily available. Having tested several methods
for establishing an approximate upstream value, the method by Ubbink (1997)
was found to give good results. In our HRIC implementation, the upstream
value is calculated from

cU = cD − 2(∇c)C · d, (43)

where d is the vector from the cell centre of KC to the cell centre of KD.
We calculate (∇c)C, which is the gradient of the colour function in the cell
centre of KC, by a least-squares gradient-reconstruction procedure (Versteeg
and Malalasekera 2007) which takes into account all cells that share one or more
vertices with the centre cell.

The Courant number used in equation (42) in this work is the facet-based
Courant number, which is computed as the facet average,

CoF = avg
F

[
u · n∆t Sf

Vc

]
, (44)

where Sf is the facet area and Vc is the cell volume.

References

Akbas, M. et al. (2017). An analogue of grad-div stabilization in nonconforming
methods for incompressible flows. report. Berlin : Weierstraß-Institut für
Angewandte Analysis und Stochastik.

Alnæs, M. S. (2012). “UFL: a Finite Element Form Language”. In: Automated
Solution of Differential Equations by the Finite Element Method, Volume 84
of Lecture Notes in Computational Science and Engineering. Ed. by Logg, A.,
Mardal, K.-A., and Wells, G. N. Springer. Chap. 17.

Alnæs, M. S. et al. (2014). “Unified Form Language: A domain-specific language
for weak formulations of partial differential equations”. ACM Transactions
on Mathematical Software 40.2.

Arnold, D. N. (1982). “An interior penalty finite element method with discontin-
uous elements”. SIAM journal on numerical analysis 19.4, pp. 742–760.

Arnold, D. N. et al. (2002). “Unified Analysis of Discontinuous Galerkin Methods
for Elliptic Problems”. SIAM J. Numer. Anal. 39.5, pp. 1749–1779.

Babuška, I. and Dorr, M. R. (1981). “Error estimates for the combined h and p
versions of the finite element method”. Numerische Mathematik 37.2, pp. 257–
277.

Baiges, J. et al. (2017). “An adaptive Fixed-Mesh ALE method for free sur-
face flows”. Computer Methods in Applied Mechanics and Engineering 313,
pp. 159–188.

31

1. Introduction

Baker, G. A., Jureidini, W. N., and Karakashian, O. A. (1990). “Piecewise
Solenoidal Vector Fields and the Stokes Problem”. SIAM Journal on Numer-
ical Analysis 27.6, pp. 1466–1485.

Balay, S. et al. (2018). PETSc Users Manual. Tech. rep. ANL-95/11 - Revision
3.9. Argonne National Laboratory.

Bangerth, W., Hartmann, R., and Kanschat, G. (2007). “deal.II—A general-
purpose object-oriented finite element library”. ACM Transactions on Math-
ematical Software 33.4.

Bassi, F. et al. (2006). “An artificial compressibility flux for the discontinuous
Galerkin solution of the incompressible Navier–Stokes equations”. Journal of
Computational Physics 218.2, pp. 794–815.

Bassi, F. et al. (2007). “An implicit high-order discontinuous Galerkin method
for steady and unsteady incompressible flows”. Computers & Fluids 36.10,
pp. 1529–1546.

Blasco, J., Codina, R., and Huerta, A. (1998). “A fractional-step method for the
incompressible Navier–Stokes equations related to a predictor–multicorrector
algorithm”. International Journal for Numerical Methods in Fluids 28.10,
pp. 1391–1419.

Bøckmann, A., Shipilova, O., and Skeie, G. (2012). “Incompressible SPH for free
surface flows”. Computers & Fluids 67, pp. 138–151.

Botti, L. and Di Pietro, D. A. (2011). “A pressure-correction scheme for convection-
dominated incompressible flows with discontinuous velocity and continuous
pressure”. Journal of Computational Physics 3, pp. 572–585.

Braess, H. and Wriggers, P. (2000). “Arbitrary Lagrangian Eulerian finite element
analysis of free surface flow”. Computer Methods in Applied Mechanics and
Engineering 190.1, pp. 95–109.

Brennen, C. and Whitney, A. K. (1970). “Unsteady, Free Surface Flows; Solutions
Employing the Lagrangian Description of the Motion”. In: Hydrodynamics in
the Ocean Environment; Eighth Symposium, Naval Hydrodynamics. Ed. by
Plesset, M. S., Wu, T. Y.-T., and Doroff, S. W. Arlington, VA, USA: Office
of Naval Research, pp. 117–145.

Brooks, A. N. and Hughes, T. J. R. (1982). “Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on
the incompressible Navier-Stokes equations”. Computer Methods in Applied
Mechanics and Engineering 32.1, pp. 199–259.

Cai, X. et al. (1998). “A Finite Element Method for Fully Nonlinear Water
Waves”. Journal of Computational Physics 143.2, pp. 544–568.

Carrero, J., Cockburn, B., and Schötzau, D. (2006). “Hybridized globally divergence-
free LDG methods. Part I: The Stokes problem”.Mathematics of Computation
75.254, pp. 533–563.

Cervone, A., Manservisi, S., and Scardovelli, R. (2010). “A FEM solver coupled
to a multilevel VOF method for simulation of axisymmetric jets and to a
front-tracking method for simulation of spreading droplets”. Atomization and
Sprays 20.2, pp. 115–131.

32

References

Cesmelioglu, A., Cockburn, B., and Qiu, W. (2017). “Analysis of a hybridizable
discontinuous Galerkin method for the steady-state incompressible Navier-
Stokes equations”. Mathematics of Computation 86.306, pp. 1643–1670.

Chan, R. K.-C. and Street, R. L. (1970a). “A computer study of finite-amplitude
water waves”. Journal of Computational Physics 6.1, pp. 68–94.

— (1970b). SUMMAC - A numerical model for water waves. Tech. rep. TR-135.
Stanford Univ. Dept. of Civil Engineering.

Chavent, G. and Salzano, G. (1982). “A finite-element method for the 1-D
water flooding problem with gravity”. Journal of Computational Physics 45.3,
pp. 307–344.

Chavent, G. and Cockburn, B. (1989). “The local projection P0-P1-discontinuous-
Galerkin finite element method for scalar conservation laws”. ESAIM: Math-
ematical Modelling and Numerical Analysis 23.4, pp. 565–592.

Chessa, J. and Belytschko, T. (2003). “An extended finite element method for
two-phase fluids”. Journal of Applied Mechanics 70.1, pp. 10–17.

Cheung, S. W. et al. (2015). “Staggered discontinuous Galerkin methods for the
incompressible Navier–Stokes equations”. Journal of Computational Physics
302, pp. 251–266.

Chourushi, T. (2019). “Proposition of modified convection boundedness criterion
and its evaluation for the development of bounded schemes”. en. Applied
Mathematics and Computation 346, pp. 710–739.

Ciarlet, P. G. (1976). Numerical analysis of the finite element method. English.
Les Presses de L’Université de Montréal.

Cockburn, B. (2003). “Discontinuous Galerkin methods”. ZAMM 83.11, pp. 731–
754.

Cockburn, B. and Gopalakrishnan, J. (2005a). “Incompressible Finite Elements
via Hybridization. Part I: The Stokes System in Two Space Dimensions”.
SIAM Journal on Numerical Analysis 43.4, pp. 1627–1650.

Cockburn, B. and Gopalakrishnan, J. (2005b). “Incompressible Finite Elements
via Hybridization. Part II: The Stokes System in Three Space Dimensions”.
SIAM Journal on Numerical Analysis 43.4, pp. 1651–1672.

Cockburn, B., Gopalakrishnan, J., et al. (2010). “Analysis of HDG Methods for
Stokes Flow”. Mathematics of computation 80, pp. 723–760.

Cockburn, B., Kanschat, G., and Schötzau, D. (2004). “The local discontinuous
Galerkin method for the Oseen equations”. Mathematics of Computation
73.246, pp. 569–594.

— (2005). “A locally conservative LDG method for the incompressible Navier-
Stokes equations”. Mathematics of Computation 74.251, pp. 1067–1095.

— (2007). “A Note on Discontinuous Galerkin Divergence-free Solutions of the
Navier–Stokes Equations”. Journal of Scientific Computing 31.1/2, pp. 61–73.

Cockburn, B., Kanschat, G., Schötzau, D., and Schwab, C. (2002). “Local
Discontinuous Galerkin Methods for the Stokes System”. SIAM Journal on
Numerical Analysis 40.1, pp. 319–343.

Cockburn, B. and Shu, C.-W. (1989). “TVB Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws. II. General
framework”. Mathematics of Computation 52.186, pp. 411–435.

33

1. Introduction

Cockburn, B. and Shu, C.-W. (1991). “The Runge-Kutta local projection P1-
discontinuous-Galerkin finite element method for scalar conservation laws”.
Modélisation mathématique et analyse numérique 25.3, pp. 337–361.

Di Pietro, D. A., Lo Forte, S., and Parolini, N. (2006). “Mass preserving fi-
nite element implementations of the level set method”. Applied Numerical
Mathematics 56.9, pp. 1179–1195.

Dumbser, M. and Loubère, R. (2016). “A simple robust and accurate a posteriori
sub-cell finite volume limiter for the discontinuous Galerkin method on
unstructured meshes”. Journal of Computational Physics 319, pp. 163–199.

Eatock Taylor, R. (1996). “Analysis of Non-Linear Wave-Body Interactions Using
Finite Elements”. en. In: Waves and Nonlinear Processes in Hydrodynamics.
Ed. by Grue, J., Gjevik, B., and Weber, J. E. Fluid Mechanics and Its
Applications. Dordrecht: Springer Netherlands, pp. 51–62.

Egger, H. and Waluga, C. (2013). “hp analysis of a hybrid DG method for Stokes
flow”. IMA Journal of Numerical Analysis 33.2, pp. 687–721.

Einkemmer, L. and Wiesenberger, M. (2014). “A conservative discontinuous
Galerkin scheme for the 2D incompressible Navier–Stokes equations”. Com-
puter Physics Communications 185.11, pp. 2865–2873.

Emamy, N. et al. (2017). “Implicit-explicit and explicit projection schemes for
the unsteady incompressible Navier–Stokes equations using a high-order dG
method”. Computers & Fluids 154, pp. 285–295.

Enright, D. et al. (2002). “A Hybrid Particle Level Set Method for Improved
Interface Capturing”. Journal of Computational Physics 183.1, pp. 83–116.

Epshteyn, Y. and Rivière, B. (2007). “Estimation of penalty parameters for
symmetric interior penalty Galerkin methods”. Journal of Computational
and Applied Mathematics 206.2, pp. 843–872.

Evans, J. A. (2011). “Divergence-free B-spline discretizations for viscous incom-
pressible flows”. thesis.

Fambri, F. (2019). “Discontinuous Galerkin Methods for Compressible and
Incompressible Flows on Space–Time Adaptive Meshes: Toward a Novel
Family of Efficient Numerical Methods for Fluid Dynamics”. Archives of
Computational Methods in Engineering, pp. 1–85.

Fambri, F. and Dumbser, M. (2017). “Semi-implicit discontinuous Galerkin
methods for the incompressible Navier–Stokes equations on adaptive staggered
Cartesian grids”. Computer Methods in Applied Mechanics and Engineering
324, pp. 170–203.

Fehn, N., Munch, P., et al. (2019). “Hybrid multigrid methods for high-order
discontinuous Galerkin discretizations”. arXiv:1910.01900 [physics].

Fehn, N., Wall, W. A., and Kronbichler, M. (2017). “On the stability of projection
methods for the incompressible Navier–Stokes equations based on high-order
discontinuous Galerkin discretizations”. Journal of Computational Physics
351, pp. 392–421.

— (2018a). “Efficiency of high-performance discontinuous Galerkin spectral
element methods for under-resolved turbulent incompressible flows: High-
performance discontinuous Galerkin for turbulent flows”. International Jour-
nal for Numerical Methods in Fluids 88.1, pp. 32–54.

34

References

— (2018b). “Robust and efficient discontinuous Galerkin methods for under-
resolved turbulent incompressible flows”. Journal of Computational Physics
372, pp. 667–693.

Ferrer, E. and Willden, R. H. J. (2011). “A high order Discontinuous Galerkin
Finite Element solver for the incompressible Navier–Stokes equations”. Com-
puters & Fluids. 10th ICFD Conference Series on Numerical Methods for
Fluid Dynamics (ICFD 2010) 46.1, pp. 224–230.

Friedrich, O. (1998). “Weighted Essentially Non-Oscillatory Schemes for the Inter-
polation of Mean Values on Unstructured Grids”. Journal of Computational
Physics 144.1, pp. 194–212.

Fu, G. (2019). “An explicit divergence-free DG method for incompressible flow”.
Computer Methods in Applied Mechanics and Engineering 345, pp. 502–517.

Galvin, K. J. et al. (2012). “Stabilizing poor mass conservation in incompressible
flow problems with large irrotational forcing and application to thermal
convection”. Computer Methods in Applied Mechanics and Engineering 237-
240, pp. 166–176.

Gaskell, P. H. and Lau, A. K. C. (1988). “Curvature-compensated convective
transport: SMART, A new boundedness- preserving transport algorithm”.
International Journal for Numerical Methods in Fluids 8.6, pp. 617–641.

Geuzaine, C. and Remacle, J.-F. (Sept. 10, 2009). “Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities”. International
Journal for Numerical Methods in Engineering 79.11, pp. 1309–1331.

Giorgiani, G., Fernández-Méndez, S., and Huerta, A. (2014). “Hybridizable Dis-
continuous Galerkin with degree adaptivity for the incompressible Navier–Stokes
equations”. Computers & Fluids 98, pp. 196–208.

Girault, V., Rivière, B., and Wheeler, M. (2005). “A discontinuous Galerkin
method with nonoverlapping domain decomposition for the Stokes and Navier-
Stokes problems”. Mathematics of Computation 74.249, pp. 53–84.

Girault, V., Rivière, B., and Wheeler, M. F. (2005). “A splitting method us-
ing discontinuous Galerkin for the transient incompressible Navier-Stokes
equations”. ESAIM: Mathematical Modelling and Numerical Analysis 39.6,
pp. 1115–1147.

Grooss, J. and Hesthaven, J. S. (2006). “A level set discontinuous Galerkin
method for free surface flows”. Computer Methods in Applied Mechanics and
Engineering 195.25, pp. 3406–3429.

Groß, S., Reichelt, V., and Reusken, A. (2006). “A finite element based level set
method for two-phase incompressible flows”. Computing and Visualization in
Science 9.4, pp. 239–257.

Groß, S. and Reusken, A. (2007). “An extended pressure finite element space for
two-phase incompressible flows with surface tension”. Journal of Computa-
tional Physics 224.1, pp. 40–58.

Guermond, J.-L., Pasquetti, R., and Popov, B. (2011). “Entropy viscosity method
for nonlinear conservation laws”. Journal of Computational Physics. Special
issue High Order Methods for CFD Problems 230.11, pp. 4248–4267.

35

1. Introduction

Guillén-González, F. and Tierra, G. (2012). “Superconvergence in velocity and
pressure for the 3D time-dependent Navier-Stokes Equations”. SeMA Journal
57.1, pp. 49–67.

Hansbo, P. and Larson, M. G. (2002). “Discontinuous Galerkin methods for
incompressible and nearly incompressible elasticity by Nitsche’s method”.
Computer Methods in Applied Mechanics and Engineering 191.17, pp. 1895–
1908.

— (2008). “Piecewise divergence-free discontinuous Galerkin methods for Stokes
flow”. Communications in Numerical Methods in Engineering 24.5, pp. 355–
366.

Harlow, F. H. andWelch, J. E. (1965). “Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface”. The Physics of
Fluids 8.12, pp. 2182–2189.

Heimann, F. et al. (2013). “An unfitted interior penalty discontinuous Galerkin
method for incompressible Navier–Stokes two-phase flow”. International
Journal for Numerical Methods in Fluids 71.3, pp. 269–293.

Heroux, M. A. and Willenbring, J. M. (2003). Trilinos Users Guide. Tech. rep.
SAND2003-2952. Sandia National Laboratories.

Hesthaven, J. S. and Warburton, T. (2008). Nodal Discontinuous Galerkin
Methods. Ed. by Marsden, J. E., Sirovich, L., and Antman, S. S. Vol. 54.
Texts in Applied Mathematics. New York, NY: Springer New York.

Hindenlang, F. et al. (2012). “Explicit discontinuous Galerkin methods for
unsteady problems”. Computers & Fluids 61, pp. 86–93.

Hirt, C. W., Amsden, A. A., and Cook, J. L. (1974). “An arbitrary Lagrangian-
Eulerian computing method for all flow speeds”. Journal of Computational
Physics 14.3, pp. 227–253.

Hirt, C. W., Cook, J. L., and Butler, T. D. (1970). “A Lagrangian method
for calculating the dynamics of an incompressible fluid with free surface”.
Journal of Computational Physics 5.1, pp. 103–124.

Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid (VOF) method for
the dynamics of free boundaries”. Journal of computational physics 39.1,
pp. 201–225.

Hu, C. and Shu, C.-W. (1999). “Weighted Essentially Non-oscillatory Schemes
on Triangular Meshes”. Journal of Computational Physics 150.1, pp. 97–127.

Huerta, A. and Liu, W. K. (1988). “Viscous flow with large free surface motion”.
Computer Methods in Applied Mechanics and Engineering 69.3, pp. 277–324.

Hughes, T. J. R. (1987). “Recent progress in the development and understanding
of SUPG methods with special reference to the compressible Euler and
Navier–Stokes equations”. International Journal for Numerical Methods in
Fluids 7.11, pp. 1261–1275.

Hughes, T. J. R., Liu, W. K., and Zimmermann, T. K. (Dec. 1981). “Lagrangian-
Eulerian finite element formulation for incompressible viscous flows”. Com-
puter Methods in Applied Mechanics and Engineering 29.3, pp. 329–349.

Jasak, H., Weller, H., and Gosman, A. (1999). “High resolution NVD differenc-
ing scheme for arbitrarily unstructured meshes”. International Journal for
Numerical Methods in Fluids 31.2, pp. 431–449.

36

References

Jasak, H. (1996). “Error analysis and estimation for the finite volume method
with applications to fluid flows”. PhD thesis. Imperial College, University of
London.

Jeong, J. H. and Yang, D. Y. (1998). “Finite element analysis of transient fluid
flow with free surface using VOF (volume-of-fluid) method and adaptive grid”.
en. International Journal for Numerical Methods in Fluids 26.10, pp. 1127–
1154.

Karakashian, O. and Katsaounis, T. (2006). “Numerical simulation of incompress-
ible fluid flow using locally solenoidal elements”. Computers & Mathematics
with Applications 51.9, pp. 1551–1570.

Karakashian, O. and Katsaounis, T. (2000). “A Discontinuous Galerkin Method
for the Incompressible Navier-Stokes Equations”. In: Discontinuous Galerkin
Methods. Ed. by Cockburn, B., Karniadakis, G. E., and Shu, C.-W. Lecture
Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer,
pp. 157–166.

Karakus, A. et al. (2016). “A GPU-accelerated adaptive discontinuous Galerkin
method for level set equation”. International Journal of Computational Fluid
Dynamics 30.1, pp. 56–68.

Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). “High-order split-
ting methods for the incompressible Navier-Stokes equations”. Journal of
Computational Physics 97.2, pp. 414–443.

Kirby, R. C. and Logg, A. (2006). “A Compiler for Variational Forms”. ACM
Trans. Math. Softw. 32.3, pp. 417–444.

Kirby, R. C., Logg, A., et al. (2012). “Common and unusual finite elements”. In:
Automated Solution of Differential Equations by the Finite Element Method.
Lecture Notes in Computational Science and Engineering. Springer, Berlin,
Heidelberg, pp. 95–119.

Klaij, C. M., van der Vegt, J. J. W., and van der Ven, H. (2006). “Space–time
discontinuous Galerkin method for the compressible Navier–Stokes equations”.
Journal of Computational Physics 217.2, pp. 589–611.

Klein, B., Kummer, F., and Oberlack, M. (2013). “A SIMPLE based discontinuous
Galerkin solver for steady incompressible flows”. Journal of Computational
Physics, pp. 235–250.

Kopecz, S. (2012). Ein gekoppeltes Finite-Elemente/Discontinuous-Galerkin-
Verfahren zur Simulation von Strömungs-Transport-Problemen. Kassel: Kassel
Univ. Press.

Krank, B. et al. (2017). “A high-order semi-explicit discontinuous Galerkin solver
for 3D incompressible flow with application to DNS and LES of turbulent
channel flow”. Journal of Computational Physics 348, pp. 634–659.

Kronbichler, M. and Wall, W. (2018). “A Performance Comparison of Continuous
and Discontinuous Galerkin Methods with Fast Multigrid Solvers”. SIAM
Journal on Scientific Computing 40.5, A3423–A3448.

Kronbichler, M. and Kormann, K. (2019). “Fast Matrix-Free Evaluation of
Discontinuous Galerkin Finite Element Operators”. ACM Trans. Math. Softw.
45.3, 29:1–29:40.

37

1. Introduction

Kuzmin, D. (Apr. 2010). “A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods”. Journal of Computational and Applied
Mathematics. Finite Element Methods in Engineering and Science (FEMTEC
2009) 233.12, pp. 3077–3085.

Labeur, R. J. and Wells, G. N. (2012). “Energy Stable and Momentum Con-
serving Hybrid Finite Element Method for the Incompressible Navier–Stokes
Equations”. SIAM Journal on Scientific Computing 34.2, A889–A913.

Lehrenfeld, C. and Schöberl, J. (2016). “High order exactly divergence-free
Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows”.
Computer Methods in Applied Mechanics and Engineering, pp. 339–361.

Leonard, B. P. (July 1979). “Adjusted quadratic upstream algorithms for tran-
sient incompressible convection”. In: 4th Computational Fluid Dynamics
Conference. Williamsburg, VA, U.S.A: American Institute of Aeronautics and
Astronautics, pp. 226–233.

— (1988). “Simple high-accuracy resolution program for convective modelling
of discontinuities”. International Journal for Numerical Methods in Fluids
8.10, pp. 1291–1318.

— (1991). “The ULTIMATE conservative difference scheme applied to unsteady
one-dimensional advection”. Computer Methods in Applied Mechanics and
Engineering 88.1, pp. 17–74.

Liu, X.-D., Osher, S., and Chan, T. (1994). “Weighted Essentially Non-oscillatory
Schemes”. Journal of Computational Physics 115.1, pp. 200–212.

Liu, J.-G. and Shu, C.-W. (May 2000). “A High-Order Discontinuous Galerkin
Method for 2D Incompressible Flows”. Journal of Computational Physics
160.2, pp. 577–596.

Logg, A., Mardal, K.-A., and Wells, G. (2012). Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book. Springer Science
& Business Media.

Logg, A., Ølgaard, K. B., et al. (2012). “FFC: the FEniCS form compiler”. In:
Automated Solution of Differential Equations by the Finite Element Method.
Ed. by Logg, A., Mardal, K.-A., and Wells, G. Vol. 84. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 227–238.

Luo, H. et al. (2010). “A reconstructed discontinuous Galerkin method for
the compressible Navier–Stokes equations on arbitrary grids”. Journal of
Computational Physics 229.19, pp. 6961–6978.

Ma, Q. W. and Yan, S. (2006). “Quasi ALE finite element method for nonlinear
water waves”. Journal of Computational Physics 212.1, pp. 52–72.

Marchandise, E. and Remacle, J.-F. (2006). “A stabilized finite element method
using a discontinuous level set approach for solving two phase incompressible
flows”. Journal of Computational Physics 219.2, pp. 780–800.

Michoski, C. et al. (Jan. 2016). “A Comparison of Artificial Viscosity, Limiters,
and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear
Settings”. en. Journal of Scientific Computing 66.1, pp. 406–434.

Moës, N., Dolbow, J., and Belytschko, T. (1999). “A finite element method
for crack growth without remeshing”. International Journal for Numerical
Methods in Engineering 46.1, pp. 131–150.

38

References

Monaghan, J. J. (1994). “Simulating Free Surface Flows with SPH”. Journal of
Computational Physics 110.2, pp. 399–406.

Montlaur, A. et al. (2010). “Discontinuous Galerkin methods for the Navier–Stokes
equations using solenoidal approximations”. International Journal for Nu-
merical Methods in Fluids 64.5, pp. 549–564.

Mozolevski, I., Süli, E., and Bösing, P. R. (2006). “Discontinuous Galerkin finite
element approximation of the two-dimensional Navier-Stokes equations in
stream-function formulation”. Communications in Numerical Methods in
Engineering 23.6, pp. 447–459.

Muzaferija, S. et al. (1998). “A Two-Fluid Navier-Stokes Solver to Simulate Water
Entry”. In: Proceedings from the 22nd Symposium on Naval Hydrodynamics.
Washington, DC, pp. 277–289.

Nguyen, N. C., Peraire, J., and Cockburn, B. (2011). “An implicit high-order hy-
bridizable discontinuous Galerkin method for the incompressible Navier–Stokes
equations”. Journal of Computational Physics 230, pp. 1147–1170.

Nichols, B. D. and Hirt, C. W. (1975). “Methods for calculating multi-dimensional,
transient, free surface flows past bodies”. In: Proceedings of the First In-
ternational Conference on Numerical Ship Hydrodynamics. 20-22 Oct 1975.
Gaithersburg, Maryland, USA, pp. 253–277.

Nickell, R. E., Tanner, R. I., and Caswell, B. (1974). “The solution of viscous in-
compressible jet and free-surface flows using finite-element methods”. Journal
of Fluid Mechanics 65.1, pp. 189–206.

Nitsche, J. A. (July 1971). “Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen
unterworfen sind”. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg 36.1, pp. 9–15.

Noh, W. F. and Woodward, P. (1976). “SLIC (Simple Line Interface Calculation)”.
In: Proceedings of the Fifth International Conference on Numerical Methods
in Fluid Dynamics June 28 – July 2, 1976 Twente University, Enschede.
Ed. by Ehlers, J. et al. Vol. 59. Twente University, Enschede: Springer Berlin
Heidelberg, pp. 330–340.

Ølgaard, K., Logg, A., and Wells, G. (2008). “Automated Code Generation for
Discontinuous Galerkin Methods”. SIAM Journal on Scientific Computing
31.2, pp. 849–864.

Ølgaard, K. B. and Wells, G. N. (2010). “Optimizations for quadrature represen-
tations of finite element tensors through automated code generation”. ACM
Transactions on Mathematical Software 37.1, pp. 1–23.

Olsson, E. and Kreiss, G. (Nov. 2005). “A conservative level set method for two
phase flow”. Journal of Computational Physics 210.1, pp. 225–246.

Osher, S. and Sethian, J. A. (1988). “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations”. Journal of Com-
putational Physics 79.1, pp. 12–49.

Owkes, M. and Desjardins, O. (2013). “A discontinuous Galerkin conservative
level set scheme for interface capturing in multiphase flows”. Journal of
Computational Physics 249, pp. 275–302.

39

1. Introduction

Pandare, A. K. and Luo, H. (2016). “A hybrid reconstructed discontinuous
Galerkin and continuous Galerkin finite element method for incompressible
flows on unstructured grids”. Journal of Computational Physics 322, pp. 491–
510.

Persson, P.-O. and Peraire, J. (2006). “An Efficient Low Memory Implicit DG
Algorithm for Time Dependent Problems”. In: 44th AIAA Aerospace Sciences
Meeting and Exhibit. American Institute of Aeronautics and Astronautics.

Pesch, L. and van der Vegt, J. J. W. (2008). “A discontinuous Galerkin finite ele-
ment discretization of the Euler equations for compressible and incompressible
fluids”. Journal of Computational Physics 227.11, pp. 5426–5446.

Peskin, C. S. (Jan. 2002). “The immersed boundary method”. Acta Numerica
11, pp. 479–517.

Piatkowski, M., Müthing, S., and Bastian, P. (2018). “A stable and high-order
accurate discontinuous Galerkin based splitting method for the incompressible
Navier–Stokes equations”. Journal of Computational Physics 356, pp. 220–
239.

Ping-Li, H., Wen-Quan, T., and Mao-Zheng, Y. (2003). “Refinement of the con-
vective boundedness criterion of Gaskell and Lau”. Engineering Computations
20.8, pp. 1023–1043.

Pochet, F. et al. (2013). “A 3D strongly coupled implicit discontinuous Galerkin
level set-based method for modeling two-phase flows”. Computers & Fluids
87, pp. 144–155.

Popinet, S. (2003). “Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries”. Journal of Computational Physics
190.2, pp. 572–600.

— (2014). Basilisk. www.basilisk.fr.
Qiu, W. and Shi, K. (2016). “A superconvergent HDG method for the incompress-

ible Navier–Stokes equations on general polyhedral meshes”. IMA Journal of
Numerical Analysis 36.4, pp. 1943–1967.

Ramaswamy, B. and Kawahara, M. (1987). “Arbitrary Lagrangian-Eulerian
finite element method for unsteady, convective, incompressible viscous free
surface fluid flow”. International Journal for Numerical Methods in Fluids
7.10, pp. 1053–1075.

Rhebergen, S., Cockburn, B., and van der Vegt, J. J. (Jan. 2013). “A space–time
discontinuous Galerkin method for the incompressible Navier–Stokes equa-
tions”. Journal of Computational Physics 233, pp. 339–358.

Rhebergen, S. and Wells, G. N. (2018). “A Hybridizable Discontinuous Galerkin
Method for the Navier—Stokes Equations with Pointwise Divergence-Free
Velocity Field”. Journal of Scientific Computing 76.3, pp. 1484–1501.

Rivière, B. and Girault, V. (2006). “Discontinuous finite element methods for
incompressible flows on subdomains with non-matching interfaces”. Computer
Methods in Applied Mechanics and Engineering 195.25, pp. 3274–3292.

Riviere, B. and Sardar, S. (2014). “Penalty-free discontinuous Galerkin meth-
ods for incompressible Navier–Stokes equations”. Mathematical Models and
Methods in Applied Sciences 24.06, pp. 1217–1236.

40

http://www.basilisk.fr/

References

Robertson, I. and Sherwin, S. (1999). “Free-Surface Flow Simulation Using
hp/Spectral Elements”. Journal of Computational Physics 155.1, pp. 26–53.

Roenby, J., Bredmose, H., and Jasak, H. (2016). “A computational method for
sharp interface advection”. Royal Society Open Science 3.11, p. 160405.

Scardovelli, R. and Zaleski, S. (1999). “Direct Numerical Simulation of Free-
Surface and Interfacial Flow”. Annual Review of Fluid Mechanics 31.1,
pp. 567–603.

Schötzau, D., Schwab, C., and Toselli, A. (2003a). “Stabilized hp-DGFEM for
incompressible flow”. Mathematical Models and Methods in Applied Sciences
13.10, pp. 1413–1436.

Schötzau, D., Schwab, C., and Toselli, A. (2003b). “Mixed hp-DGFEM for
incompressible flows”. SIAM Journal on Numerical Analysis 40.6, pp. 2171–
2194.

Schroeder, P. W. and Lube, G. (2017). “Pressure-robust analysis of divergence-
free and conforming FEM for evolutionary incompressible Navier–Stokes
flows”. Journal of Numerical Mathematics 25.4.

— (2018). “Divergence-Free H(div)-FEM for Time-Dependent Incompressible
Flows with Applications to High Reynolds Number Vortex Dynamics”. Jour-
nal of Scientific Computing 75.2, pp. 830–858.

Shahbazi, K., Fischer, P. F., and Ethier, C. R. (2007). “A high-order discontinuous
Galerkin method for the unsteady incompressible Navier-Stokes equations”.
Journal of Computational Physics 222.1, pp. 391–407.

Shu, C.-W. (2003). “High-order Finite Difference and Finite Volume WENO
Schemes and Discontinuous Galerkin Methods for CFD”. International Jour-
nal of Computational Fluid Dynamics 17.2, pp. 107–118.

Steinmoeller, D. T., Stastna, M., and Lamb, K. G. (2013). “A short note on the
discontinuous Galerkin discretization of the pressure projection operator in
incompressible flow”. Journal of Computational Physics 251, pp. 480–486.

Sun, Y.-w. and Kang, H.-g. (2012). “Application of CLEAR-VOF method to
wave and flow simulations”. Water Science and Engineering 5.1, p. 12.

Sussman, M. and Puckett, E. G. (2000). “A Coupled Level Set and Volume-
of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-
Phase Flows”. Journal of Computational Physics 162.2, pp. 301–337.

Sussman, M., Smereka, P., and Osher, S. (1994). “A Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow”. Journal of Com-
putational Physics 114.1, pp. 146–159.

Sweby, P. K. (1984). “High resolution schemes using flux limiters for hyperbolic
conservation laws”. SIAM Journal on Numerical Analysis 21.5, pp. 995–1011.

Tadmor, E. (1990). “Shock capturing by the spectral viscosity method”. Computer
Methods in Applied Mechanics and Engineering 80.1, pp. 197–208.

Tavelli, M. and Dumbser, M. (Sept. 2015). “A staggered space–time discontinuous
Galerkin method for the incompressible Navier–Stokes equations on two-
dimensional triangular meshes”. Computers & Fluids 119, pp. 235–249.

— (Aug. 2016). “A staggered space–time discontinuous Galerkin method for the
three-dimensional incompressible Navier–Stokes equations on unstructured
tetrahedral meshes”. en. Journal of Computational Physics 319, pp. 294–323.

41

1. Introduction

Tornberg, A.-K. and Engquist, B. (2000). “Interface Tracking in Multiphase
Flows”. In: Multifield Problems: State of the Art. Ed. by Sändig, A.-M.,
Schiehlen, W., and Wendland, W. L. Berlin, Heidelberg: Springer, pp. 58–65.

Touré, M. K., Fahsi, A., and Soulaïmani, A. (Jan. 2016). “Stabilised finite-
element methods for solving the level set equation with mass conservation”.
International Journal of Computational Fluid Dynamics 30.1, pp. 38–55.

Turek, S. (1999). Efficient Solvers for Incompressible Flow Problems: An Al-
gorithmic and Computational Approach. Lecture Notes in Computational
Science and Engineering. Berlin Heidelberg: Springer-Verlag.

Ubbink, O. (1997). “Numerical prediction of two fluid systems with sharp
interfaces”. PhD thesis. Imperial College, University of London.

van der Pijl, S. P. et al. (2005). “A mass-conserving Level-Set method for
modelling of multi-phase flows”. International Journal for Numerical Methods
in Fluids 47.4, pp. 339–361.

van der Vegt, J. J. W. and van der Ven, H. (2002). “Space–Time Discontinuous
Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid
Compressible Flows: I. General Formulation”. Journal of Computational
Physics 182.2, pp. 546–585.

van Leer, B. (1974). “Towards the ultimate conservative difference scheme. II.
Monotonicity and conservation combined in a second-order scheme”. Journal
of computational physics 14.4, pp. 361–370.

Versteeg, H. K. and Malalasekera, W. (2007). An Introduction to Computational
Fluid Dynamics: The Finite Volume Method. 2nd ed. Prentice Hall.

VonNeumann, J. and Richtmyer, R. D. (1950). “A Method for the Numerical
Calculation of Hydrodynamic Shocks”. Journal of Applied Physics 21.3,
pp. 232–237.

Weller, H. G. (2008). A New Approach to VOF-based Interface Capturing Methods
for Incompressible and Compressible flow. Technical report. Reading, United
Kingdom: OpenCFD.

Youngs, D. L. (1982). “Time-dependent multi-material flow with large fluid
distortion”. Numerical methods for fluid dynamics.

Yu, B. et al. (2001). “Discussion on Numerical Stability and Boundedness of Con-
vective Discretized Scheme”. Numerical Heat Transfer, Part B: Fundamentals
40.4, pp. 343–365.

42

Chapter 2

Summary of papers

Paper I discusses the challenges inherent in using a higher-order numerical
approximation when simulating two-phase flows where the large difference
in density between the heavy and the light fluid causes Gibbs oscillations in
the resulting velocity field due to the sharp jump in momentum across the
free surface. Two slope-limiting strategies for dealing with the instability
at the free surface are presented. The investigation shows that the simplest
presented method, where the convected velocity is slope limited by a scalar
component-wise slope limiter while the convecting velocity is left unlimited,
is able to completely remove the instability and produce exactly mass
conserving results for 2D free surface flows.

Paper II shows how some standard pressure-correction schemes for solving the
Navier–Stokes equations perform when used with a higher-order DG FEM
discretisation. The ability of the schemes to maintain the exact incom-
pressibility of a direct solver while allowing parallel solution is investigated
and the convergence and efficiency of the schemes are presented.

Paper III builds on the work in the previous papers by extending the multi-phase
solver to 3D and enabling full MPI parallelism through algebraic splitting
of the Navier–Stokes saddle point block matrix system. This allows the
DG FEM solution method to handle realistic physics with very complex
free-surface behaviour. The presented numerical results compare well with
published lab experiments.

Paper IV gives a condensed introduction to Ocellaris, a mass-conserving DG
FEM solver for free-surface flows with sharp interfaces between the fluids.
Ocellaris can simulate water entry and exit of objects in ocean waves with
accurate capturing of the force on the object and the behaviour of the free
surface. Ocellaris is implemented in Python and C++ with FEniCS as
the backend for the mesh and finite element assembly. PETSc is used for
solving the resulting linear systems. The source code and an extensive
user guide is available at www.ocellaris.org along with demos and videos
of what the solver is capable of. Ocellaris has been used to produce all
numerical results shown in the included papers and is presented here by a
short paper published in the Journal of Open Source Software.

43

https://www.ocellaris.org/

Papers

I

Paper I

Slope limiting the velocity field in a
discontinuous Galerkin
divergence-free two-phase flow
solver

Tormod Landet, Kent-Andre Mardal, Mikael Mortensen
Published in Computers & Fluids, DOI: 10.1016/j.compfluid.2019.104322

Abstract

Solving the Navier–Stokes equations when the density field contains a large
and sharp discontinuity—such as a water/air free surface—is numerically
challenging. Convective instabilities cause Gibbs oscillations which quickly
destroy the solution. We investigate the use of slope limiters for the velocity
field to overcome this problem in a way that does not compromise on
the mass-conservation properties. The equations are discretised using the
symmetric interior-penalty discontinuous Galerkin finite element method
that is divergence-free to machine precision.

A slope limiter made specifically for exactly divergence-free (solenoidal)
fields is presented and used to illustrate the difficulties in obtaining con-
vectively stable fields that are also exactly solenoidal. The lessons learned
from this are applied in constructing a simpler method based on the use
of an existing scalar slope limiter applied to each velocity component.

We show by numerical examples how both presented slope limiting
methods are vastly superior to the naive non-limited method. The methods
can solve difficult two-phase problems with high density-ratios and high
Reynolds numbers—typical for marine and offshore water/air simulations—
in a way that conserves mass and stops unbounded energy growth caused
by the Gibbs phenomenon.

49

https://doi.org/10.1016/j.compfluid.2019.104322

I. Slope limiting the velocity field in a two-phase flow solver

I.1 Introduction

The incompressible and variable-density Navier–Stokes equations for the unknown
velocity u and pressure p, with gravity g and spatially varying density ρ and
viscosity µ,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · µ

(
∇u+ (∇u)T

)
−∇p+ ρg, (I.1)

∇ · u = 0, (I.2)
∂ρ

∂t
+ u · ∇ρ = 0, (I.3)

are used in applications where the fluid velocity is much smaller than the speed
of sound and where gravity effects are important—such as for internal and
surface gravity waves. Unfortunately, numerical problems will occur immediately
when using equations (I.1) to (I.3) to study air/water free-surface physics with a
higher-order spatial discretisation method. These problems are due to the sharp
factor-1000 jump in momentum across the liquid/gas interface which causes
Gibbs oscillations in the velocity field, even though the true velocity has no
discontinuity at the interface. The energy in the velocity field will eventually
blow up to destroy the solution if this non-linear convective instability is not
handled with care.

The convergence of numerical approximations to the Navier–Stokes equations
with variable and potentially discontinuous density and viscosity was studied by
Liu and Walkington (2007). They show that if the continuous problem has a
unique solution then a stable discontinuous Galerkin (DG) discretisation with a
piecewise constant density field will converge to that solution. This work presents
such a stable DG discretisation. Stable fractional step methods for solving the
equations have been studied by Guermond and Quartapelle (2000), Guermond
and Salgado (2009), and Pyo and Shen (2007). Our results are computed using
a direct solver on the coupled velocity and pressure system in order to eliminate
any fractional step splitting errors from influencing the conclusions.

In this work we will use a piecewise constant density field and the volume-of-
fluid (VOF) method by Hirt and Nichols (1981) for evolving the density field
in time while maintaining a sharp interface. In the VOF method, a transport
equation for the density is solved for a normalised colour function, c ∈ [0, 1], which
is linearly related to the density. Among the most commonly used variations are
the algebraic VOF schemes CICSAM (Ubbink 1997) and HRIC (Muzaferija et al.
1999). The level-set method (Osher and Sethian 1988) is another alternative for
tracking free surfaces. Modern versions exist that significantly improve on the
historical mass conservation problems of the level-set method—see, e.g., Olsson
and Kreiss (2005) and Touré, Fahsi, and Soulaïmani (2016).

For most industrial applications, the above methods are implemented in
solvers based on low-order finite volume methods where it is possible to ensure
convective stability by appropriate use of flux limiters, see, e.g., the illustrative
discussions and diagrams of Sweby (1984) and Leonard (1988). Flux limiters

50

Introduction

based on TVD or ENO/WENO schemes are applied in the solution of the
momentum equation, and some sort of stable interface sharpening scheme such
as CICSAM or HRIC is used for the flux of density. Finite volume methods
can be partially extended to higher-order by use of larger geometrical stencils,
but this approach is not trivial to implement when using irregular grids, so
in practice it is common that only immediate neighbours are used and most
schemes are hence low-order.

For irregular geometries there are two major research directions that aim
to enable higher-order methods: immersed boundary methods and finite ele-
ment methods. Immersed boundary methods use regular background grids and
perform special treatment of grid cells near or inside objects embedded in the
computational domain (Peskin 2002). Finite element methods use basis functions
with local support to enable high-order approximating functions on irregular
meshes. The work in this paper is based on a discontinuous Galerkin (DG) finite
element method (FEM). DG FEM has two main advantages over continuous
Galerkin methods, the ease of using an upwind flux limiter for stabilising the lin-
ear convective instabilities, and the option to create exactly divergence-free and
mass-conserving numerical schemes (Cockburn, Kanschat, and Schötzau 2004;
Cockburn, Kanschat, and Schötzau 2005). There is one important drawback—
the significantly increased number of degrees of freedom. We use a variation
of the scheme from Cockburn, Kanschat, and Schötzau (2005), where instead
of using a local discontinuous Galerkin, LDG, treatment of the elliptic term, a
symmetric interior-penalty (SIP) treatment (Arnold 1982) is employed.

When using higher-order approximating polynomials, it is no longer sufficient
to use only a flux limiter to obtain convective stability—a slope limiter must also
be included in the method (Cockburn and Shu 1998; Cockburn and Shu 2001;
Kuzmin 2010). The flux limiter ensures that the cell average values are bounded.
When using higher-order basis functions, the solution can go out-of-bounds in
localised regions due to steep gradients inside each cell. A slope limiter prevents
this by flattening steep slopes near discontinuities while leaving the solution
untouched near smooth maxima so that the method’s high-order accuracy is
retained. While a flux limiter is an implicit part of the equation system and has
its stabilising effect included in the results from the linear equation solver, a
slope limiter is applied to the resulting function as an explicit post-processing
operator. Other options could be to use non-linear diffusion to combat the
non-linear instability, or to apply spectral filtering, see, e.g., Michoski et al. 2016;
Zingan et al. 2013.

This paper starts with a description of the Gibbs instability and the discon-
tinuous Galerkin method employed for solving the variable-density Navier–Stokes
equations in sections I.2.1 to I.2.4. Slope limiting is then presented; first the
hierarchical Taylor-based slope limiter by Kuzmin (2010) and Kuzmin (2013) in
section I.3.1, and then the possibility of constructing a vector-field slope limiter
that leaves the resulting velocity field both solenoidal and free from local maxima
is explored in section I.3.2. After showing that it is likely not possible to obtain a
single field that is both solenoidal and stable, separate limiting of the convecting
and the convected velocity fields is introduced. Two alternatives are presented in

51

I. Slope limiting the velocity field in a two-phase flow solver

section I.3.3; both ensure solenoidal convecting velocities while keeping convec-
tive stability. Readers familiar with DG methods and slope limiting can start at
section I.3.2, though the presentation builds directly on the preceding methods,
so some referring back may be needed. Results from numerical tests are shown
in section I.4 and discussion and concluding remarks can be found in sections I.5
and I.6.

I.2 The numerical method

I.2.1 Instabilities

The most common numerical instabilities related to handling of large density
jumps are illustrated in figures I.1a to I.1c. A ‘block’ of water starts at rest
in a box filled with air. Already in the very first time step (figure I.1a) the
solution will start to blow up if one does not either apply smoothing to the
density field, or stabilise the numerical scheme. Smoothing the initial field is not
sufficient as the interface may pinch and become non smooth (figure I.1b), so
continuous smoothing of the density field is necessary if this approach is selected.
A level-set method is a natural way to implement a smoothed density field, see,
e.g., Sussman, Smereka, and Osher (1994) and Unverdi and Tryggvason (1992).
In this work we will not apply stabilisation through smoothing. Our aim is to
decouple the stability of the method from the treatment of the density field.

(a) Initial condition (b) Pinching (c) Corner impact

Figure I.1: Illustration of typical numerical problems.

Figure I.1c illustrates a situation where the solenoidal properties of u are
important. A divergence-free convecting velocity is required for the stability
of the density transport equation (I.3), and any divergence quickly becomes a
problem in difficult situations such as the corner impact where in our experience
either mass loss or unbounded densities will occur if care is not taken to ensure
that the convecting velocity used for density transport is solenoidal.

I.2.2 Preliminaries

The notation used in this paper is relatively standard. When looking at a facet
between two cells (finite elements) we will denote one of the cells K+ and the
other K− in an arbitrary, but repeatable manner. Function values in each cell
will be given the same superscripts to distinguish between the values on opposite

52

The numerical method

sides of the facet in the discontinuous space. The average and jump operators
across an internal facet are defined as

{{u}} = 1
2(u+ + u−), (I.4)

Ju K = u+ − u−, (I.5)
Ju K = u+ − u−, (I.6)

Ju Kn = u+ · n+ + u− · n−. (I.7)

Vector terms such as the velocity u and gravity g will be denoted with a bold
font while scalars such as the pressure p, the density ρ, and the dynamic viscosity
µ are shown in italics. Projection operators are written in blackboard bold. An
example is the projection D into a solenoidal vector space. Sets are written in
a calligraphic typeface. Fluxes of a quantity, used in DG facet integrals, are
marked with a circumflex accent over the quantity, e.g., û, p̂. An additional
superscript is added when different definitions of the flux are used in different
parts of the weak form, e.g., ûw and ûp, the flux of velocity related to convection
and the flux of velocity related to the incompressibility constraint.

Let ∂K denote the boundary of element K. ΓI is the inlet portion of the
domain boundary ∂Ω where u · n < 0 for an outwards pointing normal, n. The
set of all grid cells is T (the tessellation), and the set of all facets is S (the mesh
skeleton). The set of outside facets is SO = S ∩ ∂Ω and the set of inside facets
shared between two cells is SI = S \ SO.

For a facet on the boundary, Fb ∈ SO, let the boundary cell be denoted K+.
We set terms related to the non-existent cell K− to zero, so that n+ · Jv K =
n+ ·v+ = n·v on Fb. The average is defined to be the K+ value, {{v}} = v+ = v
on SO. In both cases the superscript “+” can be dropped as there is no ambiguity.

Let Pk(K) denote the space of polynomials of-order k on an element and
Pk(F) denote the space of polynomials of order k on a facet. The basis functions
in Pk(K) are discontinuous across facets and functions in Pk(F) are discontinuous
across edges (vertices in 2D). Let the superscript •n+1 denote a value at time step
t = ∆t(n+ 1). For nabla the conventions (∇u)ij = ∂jui and (∇ · σ)i = ∂jσij
are used.

I.2.3 Discretisation

We will approximate the unknown functions in space by using discontinuous
Lagrange polynomial function spaces with polynomial order k = 2 for the
velocity in d = 2 spatial dimensions. Let the Galerkin test functions for {u, p, ρ}
be denoted respectively {v, q, r}. The discontinuous function spaces are not
restricted at the boundaries—all boundary conditions will be imposed weakly—so
the trial and test functions share spaces,

u,v ∈ [Pk(K)]d,
p, q ∈ Pk−1(K), (I.8)
ρ, r ∈ P0(K).

53

I. Slope limiting the velocity field in a two-phase flow solver

I.2.3.1 Two-phase density transport

The transport equation (I.3) for the density is modified by the introduction of
a solenoidal convecting velocity field w which is close to u, but may not be
identical as will be explained in sections I.2.4 and I.3.3. Boundary conditions
are needed only on the inlet. The strong form can then be written

∂ρ

∂t
+w · ∇ρ = 0 in Ω, (I.9)

ρ = ρI on ΓI .

In VOF methods the fluid properties are expressed in terms of an indicator
function, c ∈ [0, 1]. The true density and viscosity fields can easily be recovered
from c when the density and kinematic viscosity properties of the two fluids are
known,

ρ = cρwater + (1− c)ρair, (I.10)
µ = [cνwater + (1− c)νair] ρ. (I.11)

In order to compute c, the transport equation (I.9) for the density is modified
by inserting equation (I.10). Now the solution cn+1 ∈ P0(K) can be found by
expressing the resulting equation on weak form and integrating by parts,∫

T

1
∆t (γ1c

n+1 + γ2c
n + γ3c

n−1)r dx (I.12)

−
∫
T
cn+1w · ∇r dx+

∫
S
ĉn+1w · n+ J r K ds = 0,

where we have assumed that the convecting velocity w is Hdiv-conforming such
that the flux is continuous across facets, Jw Kn = 0.

A second-order backwards-differencing formulation, BDF2, is used for time
integration. The parameters are {γ1, γ2, γ3} = {3/2,−2, 1/2}. The BDF2 method
is monotonicity-preserving when started using a backward Euler step (Hunds-
dorfer, Ruuth, and Spiteri 2003), though the time step required to preserve
monotonicity is half that of backward Euler. The benefit is that the method
is second-order—and small time steps are anyhow required to keep the inter-
face sharp (Muzaferija et al. 1999). Second-order extrapolation is used for the
convective velocity,

w = 2wn −wn−1, (I.13)
which makes ρn+1 independent of the computed velocity at time t = (n+ 1)∆t.
The density transport equation is hence uncoupled from the momentum equation.

For the density flux, ĉn+1, the most stable choice is to take the upwind value,
which means that the boundary condition ρ̂ = ρI is used to determine ĉn+1 on
inlet facets, S ∩ ΓI . For the internal facets the term related to the flux can be
written on upwind form as

ĉn+1w · n+ =
s
cn+1 1

2(w · n+ |w · n|)
{
, (I.14)

54

The numerical method

and, by replacing the plus by a minus in equation (I.14), the downwind flux can
similarly be computed. Using the upwind and downwind fluxes on each facet,
a downwind-blended compressive interface flux can be applied to the density
transport such as CICSAM (Ubbink 1997) or HRIC (Muzaferija et al. 1999).
Such blended fluxes sharpen the interface between the two fluid layers, but
remain convectively stable unlike downwind or central fluxes. Both CICSAM
and HRIC are algebraic VOF methods which define facet-wise blending factors
to combine the upwind and downwind fluxes into one linearly stable flux. The
results in section I.4 are computed using the HRIC method.

One important note is that standard VOF flux limiters from finite volume
methods ensure that the c field remains sharp and bounded based on a convecting
velocity field that is piecewise constant on each facet. Such a field can easily be
computed from w and as long as w is solenoidal, so is the piecewise constant field.
It is this field that is used when solving for cn+1, since w is only needed on the
facets. For r ∈ P0(K), the volume integral term containing w in equation (I.12)
is identically zero.

I.2.3.2 The variable-density Navier–Stokes equations

The strong form of the variable-density Navier–Stokes equations, where the
convecting velocity is replaced by w, can be written

ρ

(
∂u

∂t
+ (w · ∇)u

)
= ∇ · µ(∇u+

(
∇u)T

)
−∇p+ ρg in Ω, (I.15)

∇ · u = 0 in Ω,
u = uD on ΓD,

∂u

∂n
= a on ΓN ,

where ΓD and ΓN are the parts of the boundary where Dirichlet and Neumann
boundary conditions are applied respectively; ΓN = ∂Ω \ ΓD. The imposed
Dirichlet boundary value is uD, while a is the imposed gradient of the velocity
in the direction of the normal on the Neumann part of the boundary. Dirichlet
boundary conditions can be enforced on external facets due to the elliptic viscosity
term, ∇ ·µ(∇u+

(
∇u)T

)
. The Navier–Stokes equations will be written on weak

form, see equation (I.20), but prior to that we will briefly discuss the symmetric
interior-penalty (SIP) method. First, the boundary condition, u = uD, is written
on weak form on an external facet F ,∫

F

u · v ds =
∫
F

uD · v ds, (I.16)

and then—using the stabilisation scheme proposed by Nitsche (1971)—the
test function v is replaced by a Petrov-Galerkin test function ṽ = κµv −
µ
(
∇v + (∇v)T

)
· n. This method is extended to enforce continuity across

55

I. Slope limiting the velocity field in a two-phase flow solver

internal facets which is necessary for stability (Arnold 1982). This gives∫
F

κµ Ju K · Jv K ds−
∫
F

(
{{
µ
(
∇v + (∇v)T

)}}
· n+) · Ju K ds = 0, (I.17)

where κµ is a penalty parameter which must be sufficiently large to ensure
stability. The analyses in Epshteyn and Rivière (2007) and Shahbazi, Fischer,
and Ethier (2007) guide us in defining the penalty parameter as a function of
the minimum and maximum dynamic viscosities, µmin and µmax, the order k of
the approximating polynomials, and the surface area SK and volume VK of each
cell K,

κµ = 3 µ
2
max
µmin

k(k + 1) max
K

(
SK
VK

)
. (I.18)

The same scheme is used for the left-hand side of the momentum equation as
for the density transport equation, but a pure upwind flux is used without any
downwind blending for the convective term. To avoid overloading the notation
we now drop the •n+1 superscript on the unknown quantities. The upwind flux
related to convection can then be written

ûww · n+ =
s
u

1
2(w · n+ |w · n|)

{
. (I.19)

Both the pressure gradient and the viscosity on the right-hand side of the
momentum equation are integrated by parts. The resulting weak form is a
direct combination of the LDG Navier–Stokes method by Cockburn, Kanschat,
and Schötzau (2005) and the SIP diffusion method by Arnold (1982). Both
these references contain more details and proofs of stability. The stability of the
convective and the diffusive terms are not interconnected, so replacing the LDG
elliptic operator with the SIP version is unproblematic. Using SIP in this way
is not novel, see e.g. Cockburn, Kanschat, and Schötzau (2007) and Shahbazi,
Fischer, and Ethier (2007). The treatment of the momentum transport and
the inter-cell continuity, both described above, are easily recognisable in the
complete weak form,∫

T

ρ

∆t (γ1u+ γ2u
n + γ3u

n−1)v dx (I.20)

−
∫
T
u · ∇ · (ρv ⊗w) dx +

∫
S
w · n+ ûw · J ρv K ds

+
∫
T
µ
(
∇u+ (∇u)T

)
: ∇v dx +

∫
SI
κµ Ju K · Jv K ds

−
∫
S

(
{{
µ
(
∇u+ (∇u)T

)}}
· n+) · Jv K ds

−
∫
SI

(
{{
µ
(
∇v + (∇v)T

)}}
· n+) · Ju K ds

−
∫
T
p∇ · v dx +

∫
S
p̂n+ · Jv K ds =

∫
T
ρ g dx.

56

The numerical method

where the flux of pressure is taken as p̂ = {{p}}.
The continuity equation (I.2) is also integrated by parts using ûp = {{u}} as

the flux related to the incompressibility constraint,∫
S
ûp · n+ J q K ds −

∫
T
u · ∇q dx = 0. (I.21)

Dirichlet boundaries On the inflow part of the Dirichlet boundary, take
ûw = uD, and on the outflow part take ûw = u, i.e., the upwind values are
used. On the whole Dirichlet boundary let ûp = uD and p̂ = p. The viscous
penalty and symmetrisation terms from equation (I.17) can be used also on the
domain boundary by replacing u− by uD. As noted in the references used to
define κµ above, the best choice is to use twice the amount of penalisation on
external facets compared to the interior facets. This leads to external boundary
integrals∫

ΓD
2κµ(u− uD) · v ds−

∫
ΓD

(µ∇v · n) · (u− uD) ds = 0. (I.22)

Neumann boundaries For the Neumann boundaries we take ûw = u, ûp = u
and p̂ = p. The extra viscous terms for symmetrisation and penalty are removed
and only the normal integration by parts terms are left. The surface term
becomes

−
∫

ΓN
µa · v ds. (I.23)

Pure Neumann boundary conditions will not be used, but we will use Dirichlet
for one velocity component and Neumann for the other to implement free-slip
boundary conditions on planes that are parallel to the axes. The definitions
above can easily be split into component-wise treatment of boundary conditions.

Solution algorithm

The Navier–Stokes equations and the density transport equation are solved
in a decoupled manner for each time step in the following order:

1. Compute an explicit convecting velocity wn+1 by use of equation (I.13).
For the first time step take w1 = u0, unless both w0 = u0 and w−1 = u−1

are given as input.

2. Find cn+1 ∈ P0(K) such that equation (I.12) is satisfied.

3. Compute the density ρn+1 and viscosity µn+1 by use of equations (I.10)
and (I.11).

4. Use the computed coefficient fields wn+1, µn+1 and ρn+1 to find un+1 ∈
[Pk(K)]d and pn+1 ∈ Pk−1(K) from equations (I.20) and (I.21).

57

I. Slope limiting the velocity field in a two-phase flow solver

I.2.4 Hdiv projection of the velocity field

In finite element methods for solving the Navier–Stokes equations it is common
to impose the incompressibility criterion, ∇·u = 0, weakly by multiplying with a
scalar test function, q, and integrating over the domain. This term,

∫
Ω∇·u q dx,

will appear directly in a coupled solver and as the right-hand side in the Poisson
equation for the pressure in a pressure-correction fractional-step scheme such as
the commonly used incremental pressure-correction scheme (IPCS).

Imposing the incompressibility criterion weakly in the space of the pressure
is sufficient for stability, but one must require exact incompressibility to locally
conserve mass and momentum. Below we explain the core ideas of the method
presented in Cockburn, Kanschat, and Schötzau (2005). By using this method,
the resulting divergence will be zero almost to machine precision, approximately
10−13 on each cell in our tests. We calculate the cell-wise error by computing the
integrated absolute value of the divergence internally in each cell,

∫
K
|∇ · u| dx,

and add to it the error in flux continuity between cells on each connected facet,∫
∂K
| Ju · n K |ds.
Let us start by noting that Hdiv-conforming finite elements exist, and that such

elements of a given polynomial order will be subspaces of the fully discontinuous
elements of the same order with the same cell geometry. Such elements impose
continuity of normal fluxes across facets and hence have fewer global degrees
of freedom. We follow Cockburn, Kanschat, and Schötzau (2005) and define a
projection from our fully discontinuous velocity u into a velocity w = Pu that
exist in a space of polynomials that are consistent with the Hdiv-conforming
elements.

The projection operator w = Pu is defined in a cell-wise manner. This local
projection is hence very fast and consists of finding w ∈ [Pk(K)]d such that∫

F

w · n v1 ds =
∫
F

ûp · n v1 ds ∀v1 ∈ Pk(F), F ∈ ∂K, (I.24)∫
K

w · v2 dx =
∫
K

u · v2 dx ∀v2 ∈Nk−1(K). (I.25)

The first equation ensures the continuity of the normal velocities across
each facet. The continuity stems from using a single valued flux, which is here
ûp = {{u}} on internal facets and ûp = uD on external facets (ûp = u on ΓN).
This flux is consistent for continuous velocity fields, as long as the solution has
sufficient smoothness to be well represented by the numerical discretisation.

In equation (I.25), the space Nk−1(K) is the Nédélec H(curl) element of
the first kind of order k − 1, see, e.g., Kirby et al. (2012) and Nédélec (1986).
The dimension of the Brezzi-Douglas-Marini (BDM) element Pk(F)×Nk−1(K)
is the same as that of the Discontinuous Lagrange DGk element on each cell
(Brezzi and Fortin 1991). It is hence possible to form square projection matrices
between the two spaces in each cell. The projection Pu is not square globally
since the degrees of freedom related to v1 are shared between exactly two cells
on all internal facets. This leads to the test space having fewer global degrees of
freedom than the fully discontinuous trial space.

58

Slope limiting

The properties of this BDM-like projection used as a velocity post-processing
step in a discontinuous Galerkin method is given by Cockburn, Kanschat, and
Schötzau (2005). The projection gives a continuous flux w ·n on all inter-element
facets, and also ensures that the total flux across each individual cell’s facets is
zero. Fulfilling these two criteria is what we mean by exact incompressibility.

I.3 Slope limiting

The numerical diffusion due to upwinding in the spatial DG scheme is sufficient to
stabilise the convective operator, and avoid spurious oscillations, when piecewise
constant approximating functions are employed. The reason is that a pure
upwind flux is a stable flux limiter—and hence ensures the boundedness of the
cell averages—which is sufficient for stability in first-order methods where the
cell averages are the only degrees of freedom. A first-order flux limiter can be
used to obtain higher-order convergence, but then it must be combined with
higher-order approximating functions inside each cell. This is the approach taken
in this work. The convective operators are then additionally stabilised through
the use of a slope limiter, where the oscillations inside each element are handled
in an element-by-element post-processing procedure (Cockburn and Shu 1998),
while the cell-average values are still bounded due to the flux limiter.

I.3.1 The hierarchical Taylor-polynomial-based slope limiter

We base our slope-limiting methods on the hierarchical vertex-based slope limiter
for scalar fields by Kuzmin (2010) and Kuzmin (2013). Kuzmin’s slope-limiting
procedure is based on using discontinuous Taylor-polynomial function spaces.
The first step is hence to project a scalar function φ in the discontinuous Lagrange
function space—which is what is used in the rest of our numerical scheme—to a
function φt in the discontinuous Taylor function space. This projection φt = Tφ
is local to each cell, and can be applied and inverted exactly by a single matrix-
vector product in each cell, so the cost of converting back and forth is negligible.

The discontinuous Taylor function space applied in Kuzmin’s method is
slightly altered from the standard definition by using the cell-average instead of
the cell-centre value for the constant term in the polynomial expansion for each
cell. This allows working separately with the conserved quantity—the average
value in each cell which is known to be bounded due to the flux limiter—and the
slopes of the function in the cell, which now do not influence the conservation

59

I. Slope limiting the velocity field in a two-phase flow solver

properties. The expansion

φt(x, y) = φ̄+ ∂φ

∂x

∣∣∣∣
c

α1(x− xc) + ∂φ

∂y

∣∣∣∣
c

α1(y − yc) (I.26)

+ ∂2φ

∂x2

∣∣∣∣
c

α2

[
(x− xc)2

2 − (x− xc)2

2

]

+ ∂2φ

∂y2

∣∣∣∣
c

α2

[
(y − yc)2

2 − (y − yc)2

2

]

+ ∂2φ

∂x∂y

∣∣∣∣
c

α2

[
(x− xc)(y − yc)

2 − (x− xc)(y − yc)
2

]
is used to describe a second-order polynomial function on a triangle where the
six coefficients are {φ̄, ∂φ/∂x|c , · · · , ∂

2φ/∂x∂y|c}. The number of coefficients is the
same as the number of nodes in a second-order Lagrange-polynomial function
space on a triangle, which ensures that the transformation matrix resulting from
T is square on each cell. The same is also true for tetrahedra and for higher and
lower polynomial orders, the number of degrees of freedom in the discontinuous
Taylor and the discontinuous Lagrange function spaces are the same. Over-lined
terms in equation (I.26), such as φ̄ and (x− xc)2/2, denote cell averages, and the
restriction ·|c signifies evaluation in the cell centre, xc, taken as the geometric
midpoint of the cell. Slope limiter coefficients αi ∈ [0, 1] are multiplied with the
i’th derivative terms, using the same α-factors for all derivatives of the same
order.

We follow Kuzmin (2013) and start by defining a set of bi-linear functions
on each cell: linear reconstructions of the function and its derivatives. Due to
their linear nature, they will have their maxima and minima at the vertices, and
this property is used to determine αi. For polynomial basis functions of order k,
the derivatives up to order k − 1 should be approximated in this manner. For a
scalar function φt ∈ P2(K) on a triangle there are three bi-linear reconstructions,

φ̃0(x, y) = φ̄+ α̃1

[
∂φ

∂x

∣∣∣∣
c

(x− xc) + ∂φ

∂y

∣∣∣∣
c

(y − yc)
]
, (I.27)

φ̃x(x, y) = ∂φ

∂x

∣∣∣∣
c

+ α̃2x

[
∂2φ

∂2x

∣∣∣∣
c

(x− xc) + ∂2φ

∂x∂y

∣∣∣∣
c

(y − yc)
]
, (I.28)

φ̃y(x, y) = ∂φ

∂y

∣∣∣∣
c

+ α̃2y

[
∂2φ

∂2y

∣∣∣∣
c

(y − yc) + ∂2φ

∂x∂y

∣∣∣∣
c

(x− xc)
]
. (I.29)

The parameters α̃i are the slope-limiting coefficients for the linear recon-
structions, i ∈ {1, 2x, 2y}. The reconstruction of the function itself, φ̃0, and
its first derivatives, φ̃x and φ̃y, can be evaluated at the three vertices of each
triangular cell. The slope-limiting coefficients are determined such that the
value of the reconstructed functions at the vertices do not form local maxima
or minima when compared to the cell centre values (φ̄, ∂φ∂x |c, and

∂φ
∂y |c) of the

linear representations in the neighbouring cells. The neighbour cells considered

60

Slope limiting

when computing the bounds are those that share the vertex, i.e. each vertex has
its own unique set of neighbour cells.

The algorithm for computing the α̃i slope-limiting coefficients is the same for
each of the linear reconstructions in equations (I.27) to (I.29). To simplify the
notation, let us work with a generic reconstruction φ̃(x, y) limited by coefficient
α̃i as a stand-in for any one of the linear reconstructions. The corresponding value
in the cell centre is denoted φ̃c = φ̃(xc, yc). For each cell in the mesh, consider
each vertex and record the minimum and maximum value of φ̃c in the cells that
share the vertex. This gives allowable bounds φ̃min

j and φ̃max
j at vertex j for

the selected linear approximation in the given cell. To ensure boundedness, the
method imposes that the reconstructed vertex value φ̃j = φ̃(xj , yj) is bounded by
the surrounding cell values, φ̃min

j ≤ φ̃j ≤ φ̃max
j . To find the maximum admissible

value of α̃i that ensures this, first for each vertex j set

α̃ij =


min{1, φ̃

max
j −φ̃c
φ̃j−φ̃c

} if φ̃j − φ̃c > 0,
1 if φ̃j − φ̃c = 0,
min{1, φ̃

min
j −φ̃c
φ̃j−φ̃c

} if φ̃j − φ̃c < 0,
(I.30)

and then compute α̃i = minj α̃ij . This is performed for each i (each linear
reconstruction in equations (I.27) to (I.29) has its own α̃i) and for each cell in
the mesh. The last step is to calculate the final slope limiter coefficients for the
second-order derivatives,

α2 = min{α̃2x, α̃2y}, (I.31)

and, since one can expect higher regularity of the first-order derivatives than
the second-order derivatives, take

α1 = max{α̃1, α2}. (I.32)

At a smooth extremal point (relative to the mesh density) equation (I.32)
will stop any limiting from happening since α2 = 1 here, even if it is likely
that α̃1 < 1. The same hierarchical treatment of the linear reconstructions is
performed when working with even higher order basis functions. If a limiting
coefficient for the fifth-order derivatives, α5 is found to be 1.0, then slope-limiting
coefficients α1,2,3,4 are all 1.0 and the field is considered smooth.

After having computed the slope-limiting coefficients α1 and α2 for a given
cell, one can project the slope-limited function φt back to the discontinuous
Lagrange function space with the help of the inverse projection T−1. If there
were no spurious oscillations in the cell, then the slope-limiting coefficients should
all end up as α̃i = 1.0, and the slope-limiter projection will hence be an identity
transform, φlim = T−1 STφ = T−1 Tφ = φ. This ensures that the order of
spatial convergence is kept the same as the underlying DG scheme. S is here the
projection from Taylor-basis functions with no limiting to the same basis with
limiters computed, the action of S is to compute and apply α1,2···k ∈ [0, 1] and
S = I if and only if α1,2,··· ,k = 1.0.

61

I. Slope limiting the velocity field in a two-phase flow solver

Slope-limiting algorithm for scalar fields

A summary of the algorithm for slope limiting of a DG scalar field φ of any
polynomial order by application of a hierarchical procedure, comparing vertex
values of linear reconstructions with cell-centre values of neighbouring cells is
given below. Everything, except the projections T, are taken from Kuzmin
(2010). The algorithm preserves the cell-averaged values of the unlimited scalar
field φ in the slope-limited scalar field φlim.

1. For each cell in the mesh, project to a Taylor-basis representation of the
unlimited scalar field, φt = Tφ, where both the Taylor and Lagrange
representations are of the same order k, φ ∈ Pk(K).

2. For polynomial orders from 0 up to k − 1, construct linear reconstructions
φ̃i as explained in equations (I.27) to (I.29). The number of reconstructions
may be much larger than k since each derivative, {∂φ/∂x, · · · , ∂φk−1/∂xk−2∂y, · · · }
requires its own reconstruction.

3. For each reconstruction φ̃i, compute the corresponding slope-limiting
coefficient α̃i = minj α̃ij as explained in equation (I.30) and below. The
reconstructed values at the vertices are now bounded by the neighbouring
cell-centre values.

4. Compute the slope-limiting coefficient for each derivative order, {α1, · · ·αk},
by taking the minimum of the slope-limiting coefficient for the recon-
structions of the same order derivative. Examples: α1 = α̃1, α2 =
min{α̃2x, α̃2y}, and α3 = min{α̃3xx, α̃3yy, α̃3xy}.

5. Increase the slope-limiting coefficients for low-order derivatives if the slope-
limiting coefficients for higher-order derivatives are larger. This ensures
α1 ≥ α2 ≥ · · · ≥ αk, and hence that smooth maxima are not limited.

6. Project the slope-limited Taylor-basis representation φlimt back to the
discontinuous Lagrange function space, φlim = T−1φlimt = T−1Sφt, where
S represents the action of steps 2–5 above.

I.3.2 On slope limiting of solenoidal fields

Slope limiting of solenoidal vector fields is more complex than slope limiting of
scalar fields due to an increased number of invariants. For scalar fields the only
invariant is that the average value in each cell must be unchanged after limiting.
For solenoidal vector fields the (i) divergence inside each element and the (ii) flux
between neighbouring elements are new invariants in addition to the (iii) average
value of each of the velocity component in each cell. Breaking these invariants
means that the result is not solenoidal (i), the slope limiting post processor is
not a non-local operation (ii), or that momentum is not preserved (iii).

62

Slope limiting

In the following sections we will describe how these invariants can be used
to reduce the number of unknowns in the cell-wise limiting problem from 12
to only 4 for a DG2 vector field, u ∈ [P2(K)]2, on a triangle. We will then
describe an optimisation method which can be used to decide the value of the
remaining four unknowns in a way that minimises the tendency to produce local
extrema. Removing all local extrema would render the method stable. We do
not claim that the below method is optimal, but it does give strong indications
that the four remaining unknowns in the cell-wise limiting problem are not
sufficient to fully control the local extrema. Creating a single velocity field that
is both solenoidal and stable is hence likely not possible—at least not by use of
a cell-wise slope-limiting process. As a result of this we propose a new way of
slope limiting the velocity field in section I.3.3, which does not require the same
field to be both solenoidal and slope limited.

I.3.2.1 A reduced basis for the solenoidal slope-limiting problem

We require the slope limiter to be local to each cell, so we consider only one cell
in the following text. Let the cell volume be denoted VK , and the area of facet i
be denoted Li. Preserving the facet average of the flux between neighbouring
cells in the limiting process gives a result which is Hdiv-compatible in a DG0
sense, which is what is needed for mass conservation. This is the least strict
requirement we can put and still maintain the cell-wise locality of the solenoidal
limiter. The cell-wise invariants we require to be left unchanged by the slope
limiting procedure are then

Ri = 1
Li

∫
Fi

u · n ds ∀i ∈ {1, 2, 3}, Uj = 1
VK

∫
K

uj dx ∀j ∈ {1, 2}.

(I.33)

There are five invariants when applying this to a 2D vector field on a triangle—
three average fluxes, denoted Ri, one for each facet, and two cell-average values,
denoted Uj , one for each component of the vector field. The sum of facet fluxes
for each cell will be unchanged after limiting. This total flux is zero, which is
compatible with a solenoidal description of the vector field inside the cell. This
property depends on the non-limited vector field being solenoidal, which is a
strict requirement of the method. ∑

i

Ri = 0 (I.34)

The initial 12 degrees of freedom for the non-limited DG2 vector field on a
triangle can be reduced since the divergence-free solution will never span the
full Lagrange space, but be restricted to the solenoidal subspace which has only
9 degrees of freedom, see e.g. Baker, Jureidini, and Karakashian (1990). This
space is spanned by(

1
0

)
,

(
0
1

)
;

(
y

0

)
,

(
0
x

)
,

(
x

−y

)
;

(
y2

0

)
,

(
0
x2

)
,

(
x2

−2xy

)
,

(
−2xy
y2

)
; (I.35)

63

I. Slope limiting the velocity field in a two-phase flow solver

which is here shown grouped into the two zeroth-order, three first-order and four
second-order vector valued polynomials.

A projection from the Lagrangian description of u to the solenoidal description
us can be implemented as us = Du on a cell-by-cell level. A straightforward
way of constructing D is to first define local x and y coordinates with origin in
the centre of each cell, and then form the cell-wise rectangular inverse projection
u = DIus by evaluating the solenoidal polynomials from equation (I.35) at
the location of the Lagrangian nodes. The least squares pseudo-inverse of this
matrix is then D. It is important to note that in our simulations the projection
is lossless such that u = DIDu. This is due to the Hdiv projection, which along
with the selected weak form of the momentum and continuity equations causes
u to be fully described by the solenoidal subspace, i.e. the non-limited vector
field is divergence-free. In general, we must remember that DI 6= D−1, so this
identity property does not hold for all vector fields.

The velocity vector field can now be described by nine degrees of freedom in
each cell, coefficients s1 · · · s9. Each of the nine coefficients is multiplied by the
corresponding vector valued polynomials in equation (I.35), numbered from left
to right. The sum of these products form the complete vector valued polynomial
field.

We will further restrict the number of degrees of freedom by making use of
the five invariants from equation (I.33). Let the coefficients for the constant
and linear polynomials be determined by the five invariants. The four quadratic
terms are now the only degrees of freedom left in each cell. Picking four arbitrary
numbers, σ1 to σ4, for the coefficients s6 to s9, one can find corresponding
constant and linear weights that make the final vector field keep the selected
invariants. In practice this can be done by forming a 9x9 matrix system,

q11 q12 q13 q14 q15 q16 q17 q18 q19
q21 q22 q23 q24 q25 q26 q27 q28 q29
q31 q32 q33 q34 q35 q36 q37 q38 q39
q41 q42 q43 q44 q45 q46 q47 q48 q49
q51 q52 q53 q54 q55 q56 q57 q58 q59
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


·



s1
s2
s3
s4
s5
s6
s7
s8
s9


=



U1
U2
R1
R2
R3
σ1
σ2
σ3
σ4


, (I.36)

where the first five rows contain appropriate weights q such that the correct
integrals from equation (I.33) are computed when the rows are multiplied by s,
the solenoidal coefficients. The weights q can easily be computed by quadrature.
By solving equation (I.36), the full set of nine solenoidal coefficients, s1 · · · s9,
can be recovered from the reduced set of four degrees of freedom, σ1 · · ·σ4. The
original 12 degrees of freedom of the Lagrangian velocity field u can be recovered
by use of the projection u = DIus.

We should note that we have no proof that the matrix in equation (I.36) is
invertible for all possible cells, but in our extensive testing we have never found

64

Slope limiting

a cell where this was not the case. For other possible matrices where σ do not
control the quadratic terms in the solenoidal basis—but let us instead decide
that the σ-coefficients are identical to s1 · · · s4—then it is easy to find cells where
the condition number of the resulting matrix is very high, so the choice of the
mapping between the reduced degrees of freedom σ and the solenoidal degrees
of freedom s is important.

In this section we have shown how the invariants (i) to (iii) from above leads
to a reduction of the slope limiting problem from 12 degrees of freedom in the
original DG2 Lagrange space to only four degrees of freedom in the reduced
solenoidal space.

I.3.2.2 Optimisation and cost functions

We have used optimisation to determine the four reduced solenoidal degrees of
freedom by minimising a cost function in R4. This optimisation is performed
for each cell to find the four coefficients σ1 · · ·σ4 that give the most stable
solution. This is done with an appropriate choice of cost function that penalises
non-smooth local maxima.

An ideal cost function will keep the limited solution very close to the original
non-limited solution, while still damping unphysical oscillations. To achieve this
we have selected to first calculate a component-wise slope-limited solution uHT
by applying the hierarchical Taylor-polynomial-based slope limiter described
in section I.3.1 to each of the velocity components. It should be noted that
this makes the result frame dependent. In principle, the scalar limiter could be
applied to scalar fields holding the vector field magnitude and direction instead,
but that possibility has not been investigated in this work. It is the velocity
components themselves that are time integrated, and it is through this time
integration that wiggles can grow and destroy the solution, so our focus has been
on this instability and not on the introduced frame dependency.

The uHT field is used as the target in the optimisation since it maintains
the correct convergence order. This target field does not keep all the solenoidal
invariants and it is hence slightly out of reach of the optimiser where unphysical
wiggles are present in the non-limited vector field—the cost function cannot get all
the way to zero. The minimum and maximum allowable vector-field component
values are computed for a set of points along the cell boundary by considering
the average values in the neighbouring cells just like in the hierarchical-Taylor
slope limiter. The range of allowable values is extended to include the already
limited field uHT in order to avoid limiting at smooth maxima. The preliminary
cost function, without suppression of spurious oscillations, is

CHT(x) =
2∑
i=1

(
ui − ui,HT

ηi

)2
, (I.37)

ηi = ui,max − ui,min (I.38)

where the sum is over the vector-field components—hence two contributions in
2D—and η is the width of the allowable range of values.

65

I. Slope limiting the velocity field in a two-phase flow solver

To penalise deviations from the allowable interval: if the current value ui is
outside the interval an additional cost is incurred. For ui above ui,max, this is

Cκ(x) =
2∑
i=1

(
κL
ui − ui,max

ηi

)2
+ κC , (I.39)

and similar if ui < ui,min. We have used κL = 1.0 and κC = 1.0 as additional
penalties for going outside the allowable range. If the current value ui is inside
the allowable bounds then κL = 0. If both u1 and u2 are in the allowable range
then κC = 0. The total cost evaluated at a point Pξ along the perimeter of the
cell is

C(xξ) = CHT(xξ) + Cκ(xξ) (I.40)

The total cost for a cell is the sum of C(x) evaluated at a set of points Pξ
along the cell perimeter. We have used the six Lagrangian nodes as the points Pξ,
i.e., the vertices and facet midpoints. The total cost for the cell to be optimised
is then calculated as

C =
6∑
ξ=1

[CHT(xξ) + Cκ(xξ)] . (I.41)

Optimisation-based slope-limiting algorithm for solenoidal vector fields

1. Project the non-limited vector field u to a solenoidal representation in each
cell, us = Du, where both the solenoidal and Lagrange representations are
of the same order k, u ∈ [Pk(K)]d.

2. Establish the weights q in the matrix from equation (I.36) by an order-
appropriate quadrature rule. Use this representation of equation (I.33)
to calculate the five invariants from the non-limited vector field in each
cell. Both the left- and right-hand sides of equation (I.36) are now known
except for the coefficients σ1 · · ·σ4.

3. Select a number of points along the perimeter of each cell. We have selected
to use the Lagrangian nodes. At each of the points, compute the minimum
and maximum allowable values according the neighbouring cells’ mean
values.

4. At the selected points, compute the component-wise limited uHT field and
use this to extend the range of allowable values to avoid limiting smooth
maxima.

5. Use the cost function from equation (I.41) in an optimisation algorithm to
find coefficients [σ1, σ2, σ4, σ4] ∈ R4 which minimise the cost for a given
cell. We have used the Broyden–Fletcher–Goldfarb–Shanno algorithm,
BFGS, as implemented in SciPy (Jones, Oliphant, Peterson, et al. 2001).

6. Project the slope-limited solenoidal representation ulims back to the discon-
tinuous Lagrange function space, ulim = Diulims .

66

Slope limiting

I.3.2.3 Optimised velocity fields

The cost function in equation (I.41) is unfortunately not able to steer even a
perfect optimisation routine towards a solution that is completely free from
spurious local maxima in all cells. There are three times more contributions to
the cost function than the degrees of freedom σ1 · · ·σ4 in each cell—and that
is when the cost function is looking for overshoots only in the Lagrange nodes,
there might still be local maxima between the Lagrange nodes.

Detailed studies of the cost functions for some selected problematic cells show
that there are cells where there does not exist any point in the four dimensional
coefficient space σ1 · · ·σ4 where the cost is below κC = 1.0. Using a brute force
optimisation algorithm that explores the entire solution space would not help for
those cells. In conclusion, it is likely not possible—by cell-wise slope limiting—to
reconstruct a velocity field that is both solenoidal and free from local maxima
based on the presented reduced basis and the chosen criteria to detect local
overshoots.

I.3.3 A split solenoidal slope-limiting algorithm

Motivated by the above findings we introduce separate limiters for the con-
vected velocity u and the convecting velocity w. Looking at the convected and
convecting velocity fields as separate, but related, is inspired by the common
practice of using an explicit convecting velocity to linearise the Navier–Stokes
equations—which is also what we have done in equation (I.15). A similar splitting
is done in cell-centred finite volume schemes where the convecting velocity field
is interpolated to the facets while the unknown convected velocity field consists
of cell averages. The convecting velocity can be partially slope limited in a way
that does not compromise on the solenoidal properties, or left entirely unlimited.
The convected velocity field must be slope limited to avoid instabilities. The
overall algorithm is shown in figure I.2.

DG solver

u

BDM proj.

u

Slope lim.

w u

un-1

un-2

un-3

...

wn-1

wn-2

wn-3

...

Figure I.2: The slope-
limiting algorithm splits
the velocity field into
two separate time histo-
ries. Shaded velocities
are solenoidal when the
box boundary is a continu-
ous line (grey background)
and free from local max-
ima when the line is dotted
(light green background).

67

I. Slope limiting the velocity field in a two-phase flow solver

In the following results section we have applied three different slope limiting
procedures for the velocity field. The first is the naive unlimited method, the
second applies the hierarchical Taylor-polynomial-based limiter to each velocity
component of the convected velocity, and applies no limiting to the convecting
velocity. The third method applies slightly different versions of the solenoidal
slope limiter from section I.3.2.2 to the two velocity fields. The convecting
velocity field is limited without regards for the resulting cost function value
in each cell; hence, for some cells the suppression of local maxima will not be
successful. The convected velocity field is treated similarly, but here the cell
velocity fields are replaced with the component-wise limited fields from the
hierarchical Taylor-polynomial-based limiter, uHT, in the cells where the local
maxima suppression is unsuccessful.

I.4 Results

The methods described above have been implemented in Ocellaris (Landet 2019),
a two-phase solver framework which is built on top of FEniCS (Logg, Mardal,
and Wells 2012) and implemented in a mix of Python and C++. The optimiser
employed is the BFGS algorithm as implemented in SciPy (Jones, Oliphant,
Peterson, et al. 2001), but for efficiency reasons we have written the optimisation
algorithm along with the cost function in C++ to decrease the running time
of the solver. The hierarchical Taylor-based slope limiter for scalar fields has
been implemented in C++ and does not contribute significantly to the running
time of the solver. The rest of the Ocellaris solver is implemented in Python
and depends on the C++ code-generation facilities in FEniCS to utilise the
computational resources optimally. The source code, input files, and scripts to
reproduce the figures shown below can be found in Landet 2017.

In the following text we will compare three numerical algorithms, (i) a naive
DG implementation without any slope limiters, (ii) a simple velocity slope
limiting implementation using the scalar Taylor-based limiter on each of the
convected velocity components and no limiting of the convecting velocity (referred
to as ‘Hierarchical Taylor’), and (iii) the more involved cell-wise optimisation
described above where both the convected and convecting velocity fields are
optimised with slightly different criteria (referred to as ‘Solenoidal’).

To properly test the presented limiters it is important to ensure that artificially
high viscosity is not a contributing factor to the method’s stability. For the
air/water free-surface test cases we have applied ν = 1.0× 10−6 m2 s−1 for both
phases, which is artificially low for the air phase. With this choice of viscosity,
the non-linear convective instability impacts the results early in the simulations.
This is also true for, e.g., ν = 1.0× 10−4 m2 s−1, but not for very high kinematic
viscosities, when ν approaches 1.0. Note that the dynamic viscosity µ—the
parameter that goes into the weak form in equation (I.20)—is not the same in
the two phases, it has the same factor 1000 jump as the density.

68

Results

I.4.1 Taylor-Green vortex

The first test case is a study of the effect of slope limiting on the spatial
convergence of the numerical scheme by considering a Taylor-Green vortex where
the density is constant and the solution u = [u, v], p is given by,

u = − sin(πy) cos(πx) exp(−2π2νt)
v = sin(πx) cos(πy) exp(−2π2νt) (I.42)
p = −1/4 ρ(cos 2πx+ cos 2πy) exp(−4π2νt)

for t ∈ [0, 1] on a domain Ω = {(x, y) ∈ [0, 2] × [0, 2]}. This test case is often
solved on a periodic domain, but we use Dirichlet boundary conditions for u to
test the effect of the boundary. Initial conditions are given both at t = 0 and
t = −∆t to be able to use second-order time stepping from the start. A constant
time step of ∆t = 0.01 is used and the kinematic viscosity is ν = 0.005.

10 1 2 × 10 1 3 × 10 1

h

10 4

10 3

10 2

10 1

100

101

L2
 e

rro
r

Order 3

Solenoidal
Solenoidal (no boundary)
Hierarchical Taylor
Hierarchical Taylor (no boundary)
Non-limited

Figure I.3: Spatial convergence rate on the Taylor-Green vortex test case. The
rate of convergence is as expected, but missing neighbour-cell information near
boundaries in the limiters gives a larger constant in the L2 error plot.

A slope limited solution should be identical to the non-limited solution for
this test case—there are no non-smooth maxima in the true solution. Still, exact
equivalence is not obtained since the DG FEM vector field is only a numerical
approximation. The main discrepancy is in the handling of boundary conditions.
Vertices on the boundary will be missing neighbour cells and may hence be
unnecessarily slope limited. Figure I.3 shows that the results converge towards
the non-limited solution when slope limiting is avoided in the boundary facing
cells. When boundary cells are included in the limiter, the expected third-order
L2 convergence rate is still obtained, but the constant is larger.

I.4.2 Dam break

The first two-phase flow example is a classic dam-break-in-a-box simulation as
illustrated in figure I.4 based on the experiments by Martin and Moyce (1952).
This is one of the most commonly used test cases in the high-Reynolds-number
low-surface-tension regime. This is the regime most interesting for studying
marine and offshore structures, which is the ultimate goal of the method.

69

I. Slope limiting the velocity field in a two-phase flow solver

5a

2a

a

3a

g

Figure I.4: Dam-break simulation geometry.

The 2D rectangular water column is 1a wide and 2a high and starts at rest
in the lower left corner of a box filled with air which is 5a wide and 3a high. The
size of the column is the same as in the experiments, a = 2.25 in = 0.057 15 m.
The two phases are water and air with densities 1000 kg m−3 and 1.0 kg m−3

respectively. This corresponds to tables 2 and 6 in Martin and Moyce (1952).
The acceleration of gravity is g = 9.81 m s−2 in the negative y-direction and the
kinematic viscosity is ν = 1.0× 10−6 m2 s−1 for both phases.

The total kinematic energy, Ek =
∫

Ω
1/2 ρu · u dx, is shown in figure I.5 as a

function of time for the slope-limited and the non-limited methods. From the
start, with both fluids at rest, the kinetic energy increases as the water mass
starts to flow down and towards the right wall. There is a slight reduction as
the water hits this wall at approximately t = 0.19 s. The Gibbs oscillations start
to dominate the non-limited solution after a short time and from t = 0.04 s the
solution is non-physical and completely dominated by numerical errors. In the
rest of this paper we will remove the non-limited method from the results as it
leads to non-physical solutions in all cases.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

10 4

10 2

100

102

104

E k

Hierarchical Taylor
Solenoidal
Non-limited

Figure I.5: Kinetic energy as a function of time for three slope-limiting strategies.

The results of the two slope-limited methods are compared to the experimental
results in figure I.6. The experimental data points are the ensemble averages of
the results reported for the same geometry by Martin and Moyce (1952). We
have employed free-slip boundary conditions, and hence the surge front moves
slightly faster than in the experimental results, but the qualitative behaviour is

70

Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T

0

1

2

3

4

5
Z

Hierarchical Taylor
Solenoidal
Martin & Moyce

(a) Surge front position

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

H

Hierarchical Taylor
Solenoidal
Martin & Moyce

(b) Height of water column

Figure I.6: Comparison of the numerical results with experimental results by
Martin and Moyce (1952). The vertical axis scaling is Z = z/a and H = η/2a.
Measured from the lower left corner, z is the surge front position and η is the
height of the water column. The horizontal axis scaling is T = t

√
2g/a and

τ = t
√
g/a.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

U

Hierarchical Taylor
Solenoidal

Figure I.7: Dam break; comparison of the two velocity slope limiters in terms of,
∆U , the scaled L2 distance between convected and convecting velocity fields.

correct. The maximum height of the water column matches very well until the
water hits the domain boundary and creates a jet shooting up along the right
wall at t ≈ 0.19 s which corresponds to T = t

√
2g/a ≈ 3.5 and τ = t

√
g/a ≈ 2.8.

The right wall was placed much further away in the experimental setup.
As can be seen in figures I.5 and I.6, the two investigated limiters perform

very similarly on the dam break test case. The ‘Solenoidal’ method requires
significantly more computation per time step than the component-wise Taylor-
based limiter and is more complex to implement. One reason why one could
still consider using this method is that the optimisation may keep the difference
between the convected and the convecting velocity fields smaller and hence closer
to the true solution. To test how much this optimisation contributes we have
calculated the difference between the velocity fields, ∆U = ‖u−w‖ / ‖u‖, for
all time steps and the results can be seen in figure I.7.

The difference is large in the beginning since both u and w are close to zero
at this time. After the initial phase the difference is low for both limiters. We
can see that right before the water impacts the wall at approximately t = 0.19 s,
the slope limiters start to perform differently for some time until the impact

71

I. Slope limiting the velocity field in a two-phase flow solver

is over. The reason is that the ‘Hierarchical Taylor’ slope limiter introduces
a very high divergence in the convected velocity field in the tank corner. The
optimisation based limiter performs as expected and the difference between the
two fields is lower, but not entirely removed.

Later in the time series there is a new event when the water is shooting up
in a thin jet along the right wall at approximately t = 0.27 s, corresponding to
slightly after the illustration in figure I.1c. In figure I.7 one can see that the
optimised slope limiter is introducing slightly higher ∆U differences than the
Taylor-based slope limiter, quite contrary to the intention. This is actually a
pathological case where the difficulties inherent in trying to conserve both the
cell-averaged values and the facet-averaged fluxes become quite clearly visible.

To explain the situation, let the width of the jet be denoted δ, and let
us assume that the velocity in the air outside the jet is much lower than the
velocity of the water inside the jet, both purely vertical. The width of the jet is
significantly smaller than the width of the cells close to the vertical wall where
the jet is shooting up. Since not all facets in the triangular cells can be either
orthogonal or parallel to the flow, the part of each cell’s area that is covered by
the jet is proportional to δ2, which in turns requires the slope-limited magnitude
of the jet to be proportional to δ−2 in order to preserve the average vertical
velocity in each cell. The problem is that the length of the parts of the facets
covered by the jet are linearly related to the jet width, δ, so smoothing the
sharp gradient by widening the jet will change the facet fluxes, which is not
allowable in the optimisation-based solenoidal slope limiter. The optimiser will
have to come up with a solution that is smooth, and also does not change the
facet fluxes, not an easy task. The end result is that the difference between the
optimised solution and the component-wise limited solution is larger than the
difference between the non-limited solution and the component-wise solution, as
can be seen in figure I.7.

I.4.3 Tank filling

To provide a more challenging test of the method’s stability with a large and
complex free surface we have performed a set of tank-filling simulations inspired
by Guermond, Luna, and Thompson (2017), but unlike in their work we have
used physical properties closer to normal water and air, and the results are hence
more energetic. The physical properties are the same as in the dam break test
case.

The geometry of the tank can be seen along with the resulting density field in
figure I.8. The domain is the unit square and the inlet is located between 0.5 m
and 0.625 m above the floor on the left wall, 1/8 m wide. The outlet is located
in the roof between 0.5 m and 0.625 m from the left wall and is also 1/8 m wide.
The inlet and outlet velocities are prescribed as 2 m s−1, constant for all time.
At t=0 the tank is completely filled with air, the velocity inside is zero, and the
pressure is hydrostatic.

The results are computed on a regular mesh with triangular cells and no
mesh grading. There are eight cells across the inlet and 64x64x2 cells in total.

72

Results

Figure I.8: Tank-filling results. The first row shows the density field at t = 0.167,
0.333, 0.500, 0.667, 0.833, and 1.000, the second and third row have the same
temporal spacing, hence the lower rightmost image shows the simulation end
point, t = 3 s. The finest resolution is shown, using the ‘Hierarchical Taylor’
slope limiter.

The domain is divided into squares which are further subdivided into triangles.
The time step is ∆t = 0.0001 s. The solution has also been calculated on a finer
mesh with 16 elements across the inlet, 128x128x2 cells in total. The time step
was then ∆t = 5.0× 10−5 s and only the ‘Hierarchical Taylor’ slope limiter was
tested. The results from all three simulations qualitatively exhibit the same
physics and look similar. The density field from the simulations on the fine mesh
is shown in figure I.8 at regular intervals up to the maximum simulation time of
3 s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

200

400

600

800

1000

M
as

s

Hierarchical Taylor
Solenoidal
Hierarchical Taylor, fine
Analytical solution

(a) Total mass

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0

2000

4000

6000

To
ta

l e
ne

rg
y

Hierarchical Taylor
Solenoidal
Hierarchical Taylor, fine
Analytical solution

(b) Total energy

Figure I.9: Tank filling: comparison of the two velocity slope limiters in terms
of conservation of mass and energy.

The performance of the slope limiters is compared in terms of stability and
conservation. We have calculated the total mass and energy inside the tank
and the results can be seen in figures I.9a and I.9b. The analytical solutions
in the figures are computed under the assumption that only air exits through
the outlet, which is not true in the second half of the simulation. When looking

73

I. Slope limiting the velocity field in a two-phase flow solver

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

U

Hierarchical Taylor
Solenoidal
Hierarchical Taylor, fine

Figure I.10: Tank filling: comparison of the two velocity slope limiters in terms
of, ∆U , the scaled L2 distance between convected and convecting velocity fields.

at conservation of mass in the first part of the simulations, only very minor
differences can be seen between the methods; both methods preserve mass very
well. This is exactly as expected since mass conservation is the key invariant in
both slope limiters—the convecting velocity field is always solenoidal.

The loss of mass and energy through the outlet—starting at approximately
1.7 seconds—can also be seen in the time history of the total energy in figure I.9b.
Up to that point the optimisation-based solenoidal slope limiter can be seen to
preserve total energy better than the component-wise hierarchical Taylor-based
limiter. Refining the mesh improves the results from the hierarchical Taylor-
based limiter, but the optimised solenoidal limiter still outperforms it, even if it
is running on a much coarser mesh.

Both methods are stable for the duration of the simulation, but some spurious
increases in total energy can be seen in the ‘Solenoidal’ method. The ‘Hierarchical
Taylor’ method has no noticeable spurious increases, at the expense of slowly
loosing energy. The reason for the spurious increase in energy in the ‘Solenoidal’
method around 1.2 s in figure I.9b may be the fact that local maxima are allowed
to occur between the Lagrange polynomial nodes.

The difference between the convected and the convecting velocity, ∆U , has
been calculated in the same manner as in the dam-break test case and the results
can be seen in figure I.10. Both methods preserve a low difference between
the velocity fields for most of the time steps, but both have instances when
the difference grows larger. This is particularly noticeable in the ‘Solenoidal’
method which has some large spikes. In general the optimised method maintains
a lower difference, on par with the refined hierarchical Taylor-based method.
Both methods are shown to recover from temporary spikes and return to a low
difference, which is the correct solution.

I.5 Discussion

We have shown how convective instabilities in higher-order two-phase flow
simulations can be stabilised without sacrificing mass conservation. Our efforts
have been focused on the use of slope limiters to achieve this stabilisation. Using
optimisation on a solenoidal reduced basis to create one single velocity field

74

Discussion

that is both stable and solenoidal was investigated. The results show strong
indications that this may in fact not be possible. To overcome this problem, two
methods that treats the convected velocity field differently from the convecting
velocity field were proposed. These methods combine exact mass and momentum
conservation with convective stability for two-phase simulations containing large
density jumps inside the computational domain.

The suggested methods have been tested to see if there were any negative
impact on the solution of smooth problems. Optimal convergence on a smooth
Taylor-Green vortex problem was shown. Further, a two-dimensional dam-break
simulation with a factor-1000 sharp density jump in the computational domain
was tested. Such simulations are not possible to handle without some form
of convective stabilisation of the higher-order solution. Both slope limiting
strategies handled this problem well. Finally, we have studied mass and energy
conservation in a very energetic flow—a tank-filling simulation. A summary of
our results is that slope limiting is a possible way to stabilise a mass-conserving
discontinuous Galerkin method for the incompressible Navier–Stokes equation
with large density jumps.

There are other methods than slope limiting for stabilising high-order convec-
tive instabilities in discontinuous Galerkin methods. Instead of using an explicit
post processing operator, one can add specifically tailored implicit damping
to the cells near the free surface with a method such as the entropy-viscosity
method, (Zingan et al. 2013). Another method that has been used is to selec-
tively reduce the polynomial approximation order in cells near the free surface,
a special use of p-adaptivity (Robert J. Labeur, private communication, 2017).
The advantages of the explicit slope-limiting method is the decoupling of the
convective stabilisation from the definition of the weak form and the assembly
of the equation system.

The component-by-component velocity-limiting method has a large advantage
over other available methods in the relative ease of implementation. Some type
of scalar slope limiter is likely to be already present in a DG FEM code. Just as
for the solenoidal limiter, no extra method-dependent viscosity parameters need
to be derived, and no selective p-adaptivity is needed in the software. There is
no need to tune parameters in the methods to achieve stability. Extension to
higher-order is also straightforward.

The run-time penalty of the component-by-component velocity-limiting
method is small. Even on realistic 3D simulations with MPI-parallelised Krylov-
solvers (upcoming paper), instead of the relatively slow 2D direct coupled
equation solver used here, we still observe that the run-time penalty is negligible,
around 0.3 % of the wall clock time, though this relative contribution may in-
crease somewhat as the overall solver is further optimised. Based on the results
of this paper, we have not included the solenoidal limiter in the parallelised
version of the solver, so we do not have realistic performance numbers for this.
With a single-CPU direct solver, as used in this paper, the Solenoidal slope
limiter is far from dominating the running time, but it is obviously much more
expensive than the component-by-component velocity-limiting method.

Both slope-limiter methods require access to degrees of freedom in neighbour

75

I. Slope limiting the velocity field in a two-phase flow solver

cells, even if the calculations only change degrees of freedom in one cell at a
time. This is efficiently handled through mesh ghosting when running in parallel
on a computational cluster. The DG method itself requires access to degrees
of freedom in cells sharing a facet to compute fluxes, so the only change is to
require node-neighbour ghosting instead of only facet-neighbour ghosting. This
will have some impact on performance due to larger message sizes every time
the MPI ranks are synchronised.

I.6 Conclusion

An algorithm using cell-wise optimisation in an attempt to construct a slope
limiting method for solenoidal vector fields is presented. The goal of the algorithm
is to keep the divergence free property, while removing unphysical wiggles.
We show strong indications that obtaining both machine-zero divergence and
convective stability is not possible in a slope limiting post-processing filter with
a single velocity field. The solenoidal limiter is then reformulated in a framework
where the convecting and the convected velocity fields are treated separately. In
this framework, any existing scalar slope limiter can be used on each of the velocity
components, dramatically simplifying the implementation. The solenoidal slope
limiter is compared with an existing hierarchical Taylor-polynomial-based scalar
slope limiter, and the results indicate that component-wise limiting gives equally
good results. Component-wise limiting can be recommended as the simplest
and least intrusive way of stabilising a single-phase DG FEM solver for use in a
multi-phase flow setting where the density field has a sharp discontinuity and
the convecting velocity field should remain exactly solenoidal.

Acknowledgements

The authors are thankful to Miroslav Kuchta for proofreading and for valuable
discussion related to this work. We would also like to thank the reviewers,
especially the descriptions of the slope-limiting methods have been greatly
improved by their comments.

References

Arnold, D. N. (1982). “An interior penalty finite element method with discontin-
uous elements”. SIAM journal on numerical analysis 19.4, pp. 742–760.

Baker, G. A., Jureidini, W. N., and Karakashian, O. A. (Dec. 1990). “Piece-
wise Solenoidal Vector Fields and the Stokes Problem”. SIAM Journal on
Numerical Analysis 27.6, pp. 1466–1485.

Brezzi, F. and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods.
Springer Series in Computational Mathematics 15. Springer-Verlag, New
York.

76

References

Cockburn, B., Kanschat, G., and Schötzau, D. (2004). “The local discontinuous
Galerkin method for the Oseen equations”. Mathematics of Computation
73.246, pp. 569–594.

— (2005). “A locally conservative LDG method for the incompressible Navier-
Stokes equations”. Mathematics of Computation 74.251, pp. 1067–1096.

— (2007). “A Note on Discontinuous Galerkin Divergence-free Solutions of the
Navier–Stokes Equations”. Journal of Scientific Computing 31.1-2, pp. 61–73.

Cockburn, B. and Shu, C.-W. (Apr. 1998). “The Runge–Kutta Discontinu-
ous Galerkin Method for Conservation Laws V”. Journal of Computational
Physics 141.2, pp. 199–224.

— (2001). “Runge-Kutta discontinuous Galerkin methods for convection-dominated
problems”. Journal of Scientific Computing 16.3, pp. 173–261.

Epshteyn, Y. and Rivière, B. (2007). “Estimation of penalty parameters for
symmetric interior penalty Galerkin methods”. Journal of Computational
and Applied Mathematics 206.2, pp. 843–872.

Guermond, J.-L., Luna, M. Q. de, and Thompson, T. (Sept. 2017). “An conser-
vative anti-diffusion technique for the level set method”. Journal of Compu-
tational and Applied Mathematics 321, pp. 448–468.

Guermond, J.-L. and Quartapelle, L. (Nov. 2000). “A Projection FEM for
Variable Density Incompressible Flows”. Journal of Computational Physics
165.1, pp. 167–188.

Guermond, J.-L. and Salgado, A. (May 2009). “A splitting method for incom-
pressible flows with variable density based on a pressure Poisson equation”.
Journal of Computational Physics 228.8, pp. 2834–2846.

Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid (VOF) method for
the dynamics of free boundaries”. Journal of computational physics 39.1,
pp. 201–225.

Hundsdorfer, W., Ruuth, S. J., and Spiteri, R. J. (Jan. 2003). “Monotonicity-
Preserving Linear Multistep Methods”. SIAM Journal on Numerical Analysis
41.2, pp. 605–623.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific
tools for Python.

Kirby, R. C. et al. (2012). “Common and unusual finite elements”. In: Automated
Solution of Differential Equations by the Finite Element Method. Lecture
Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg,
pp. 95–119.

Kuzmin, D. (Apr. 2010). “A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods”. Journal of Computational and Applied
Mathematics. Finite Element Methods in Engineering and Science (FEMTEC
2009) 233.12, pp. 3077–3085.

— (Mar. 2013). “Slope limiting for discontinuous Galerkin approximations with
a possibly non-orthogonal Taylor basis”. International Journal for Numerical
Methods in Fluids 71.9, pp. 1178–1190.

Landet, T. (July 2017). Ocellaris DG FEM software and input files to reproduce
results. Zenodo: 10.5281/zenodo.845352.

77

http://doi.org/10.5281/zenodo.845352

I. Slope limiting the velocity field in a two-phase flow solver

Landet, T. (2019). “Ocellaris: a DG FEM solver for free-surface flows”. Journal
of Open Source Software 4.35, p. 1239.

Leonard, B. P. (1988). “Simple high-accuracy resolution program for convective
modelling of discontinuities”. International journal for numerical methods in
fluids 8.10, pp. 1291–1318.

Liu, C. and Walkington, N. J. (Jan. 2007). “Convergence of Numerical Approxi-
mations of the Incompressible Navier–Stokes Equations with Variable Density
and Viscosity”. SIAM Journal on Numerical Analysis 45.3, pp. 1287–1304.

Logg, A., Mardal, K.-A., and Wells, G. (Feb. 2012). Automated Solution of
Differential Equations by the Finite Element Method: The FEniCS Book.
Springer Science & Business Media.

Martin, J. C. and Moyce, W. J. (Mar. 1952). “Part IV. An Experimental Study of
the Collapse of Liquid Columns on a Rigid Horizontal Plane”. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 244.882, pp. 312–324.

Michoski, C. et al. (Jan. 2016). “A Comparison of Artificial Viscosity, Limiters,
and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear
Settings”. en. Journal of Scientific Computing 66.1, pp. 406–434.

Muzaferija, S. et al. (1999). “A Two-Fluid Navier-Stokes Solver to Simulate Water
Entry”. In: Twenty-Second Symposium on Naval Hydrodynamics. Washington,
DC: The National Academies Press, pp. 638–651.

Nédélec, J.-C. (Jan. 1986). “A new family of mixed finite elements in R3”.
Numerische Mathematik 50.1, pp. 57–81.

Nitsche, J. A. (July 1971). “Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen
unterworfen sind”. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg 36.1, pp. 9–15.

Olsson, E. and Kreiss, G. (Nov. 2005). “A conservative level set method for two
phase flow”. Journal of Computational Physics 210.1, pp. 225–246.

Osher, S. and Sethian, J. A. (1988). “Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations”. Journal of com-
putational physics 79.1, pp. 12–49.

Peskin, C. S. (Jan. 2002). “The immersed boundary method”. Acta Numerica
11, pp. 479–517.

Pyo, J.-H. and Shen, J. (Jan. 2007). “Gauge–Uzawa methods for incompressible
flows with variable density”. Journal of Computational Physics 221.1, pp. 181–
197.

Shahbazi, K., Fischer, P. F., and Ethier, C. R. (2007). “A high-order discontinuous
Galerkin method for the unsteady incompressible Navier-Stokes equations”.
Journal of computational physics 222.1, pp. 391–407.

Sussman, M., Smereka, P., and Osher, S. (Sept. 1994). “A Level Set Approach
for Computing Solutions to Incompressible Two-Phase Flow”. Journal of
Computational Physics 114.1, pp. 146–159.

Sweby, P. K. (1984). “High resolution schemes using flux limiters for hyperbolic
conservation laws”. SIAM Journal on Numerical Analysis 21.5, pp. 995–1011.

78

References

Touré, M. K., Fahsi, A., and Soulaïmani, A. (Jan. 2016). “Stabilised finite-
element methods for solving the level set equation with mass conservation”.
International Journal of Computational Fluid Dynamics 30.1, pp. 38–55.

Ubbink, O. (1997). “Numerical prediction of two fluid systems with sharp
interfaces”. PhD thesis. Imperial College, University of London.

Unverdi, S. O. and Tryggvason, G. (May 1992). “A front-tracking method for
viscous, incompressible, multi-fluid flows”. Journal of Computational Physics
100.1, pp. 25–37.

Zingan, V. et al. (Jan. 2013). “Implementation of the entropy viscosity method
with the discontinuous Galerkin method”. Computer Methods in Applied
Mechanics and Engineering 253, pp. 479–490.

79

II

Paper II

On exactly incompressible DG
FEM pressure-splitting schemes
for the Navier–Stokes equation

Tormod Landet, Mikael Mortensen

Abstract

We compare three existing iterative pressure-correction schemes for solving
the Navier–Stokes equations with a focus on obtaining exactly divergence-
free solutions with a higher-order discontinuous Galerkin discretisation.
The investigated schemes are the incremental pressure-correction scheme
on the standard differential form (IPCS-D), the same scheme on algebraic
form (IPCS-A), and the semi-implicit method for pressure-linked equations
(SIMPLE).

We show algebraically and through numerical examples that the IPCS-
A and SIMPLE schemes can be exactly mass conserving due to the al-
gebraic pressure correction, while the IPCS-D scheme can never give
exactly divergence free results due to the stabilisation terms required in
the pressure-Poisson equation. By exact mass conservation we mean that
the velocity field is pointwise divergence free inside each mesh cell and that
the normal velocity is single valued across internal mesh facets. The SIM-
PLE scheme requires a significantly higher number of pressure-correction
iterations to obtain converged results than the IPCS-A scheme, so for
efficient and mass conserving DG FEM simulations the IPCS-A method is
the best option among the three methods evaluated.

83

II. Exactly incompressible DG FEM pressure-splitting schemes

II.1 Introduction

The incompressible Navier–Stokes equations are challenging to solve efficiently.
Fast, stable, and parallel solution procedures are still an active research field
more than fifty years after the first pressure-correction solvers were introduced
by Chorin (1968) and Temam (1969). Our focus in this work is on how to obtain
machine-precision zero divergence in the resulting velocity field when applying
iterative solvers. This is possible since the selected DG FEM discretisation
has this property when the system is solved by a direct solver. We approach
the topic by comparing three well-known pressure-correction methods. Our
contribution is the comparison of the methods in terms of not only speed and
accuracy, but also the resulting divergence. This work is meant to help select a
pressure-correction solver among the most popular methods for uses where the
divergence-free properties of the original system is wanted also in the iterative
pressure-correction method.

The equation system to be solved is the linearised incompressible Navier–
Stokes equations, where we have removed the non-linearity simply by introducing
an explicitly extrapolated convecting velocity. This is done since the non-linearity
is not the topic of this investigation, and this is also a common way of dealing
with the convective term in the investigated methods. Denoting the unknown
velocity vector as u, the explicit convecting velocity as w, the pressure as p, the
fluid density as ρ and the fluid dynamic viscosity as µ, the equations can be
written

ρ

(
∂u

∂t
+ (w · ∇)u

)
= ∇ · µ

(
∇u+ (∇u)T

)
−∇p, (II.1)

∇ · u = 0,

which, after discretisation, leads to a sparse discrete block matrix problem,[
A B
C 0

] [
u
p

]
=
[
d
e

]
, (II.2)

where the sub-matrix A is a discrete version of the bilinear operator A,

A• ≡ ρ

∆tγ1•+ ρ(w · ∇)• − ∇ · µ
(
∇•+ (∇•)T

)
, (II.3)

which has been assembled by use of the discontinuous Galerkin finite element
(DG FEM) scheme described in section II.2. Similar holds for the matrices B
and C, the discrete versions of the pressure-gradient and velocity-divergence
operators. The unknowns u and p (bold, non-italic) are now arrays of unknowns
containing the degrees of freedom describing the velocity and pressure fields. The
vectors d and e contain the assembled linear operators from the momentum and
continuity equations respectively. Note that due to the application of boundary
conditions, the vector e is not necessarily zero.

There are many methods for solving the sparse saddle-point system shown
in equation (II.2). With appropriate boundary and initial conditions the equa-
tions are well-formed and can be solved directly on coupled form by an LU-
decomposition method. Fast parallel sparse LU solvers exist, such as MUMPS,

84

Introduction

which uses multifrontal LU factorization (Amestoy, Duff, et al. 2001; Amestoy,
Guermouche, et al. 2006), and SuperLU_DIST, which uses supernodal LU
factorization (X. Li et al. 1999; X. S. Li 2005; X. S. Li and Demmel 2003).
Unfortunately, such direct solution methods only scale up to a relatively small
number of parallel processors, but they can solve this saddle-point linear equation
system without any special preconditioning.

Unlike direct solvers, iterative Krylov-subspace methods can scale to thou-
sands of processors, but they require preconditioning for efficient and stable
solution of saddle-point problems (Fletcher 1976; Hestenes and Stiefel 1952;
Saad and Schultz 1986; Vorst 1992). Pressure-correction methods are a popular
family of methods to deal with the saddle-point problem in the Navier–Stokes
equations by splitting the coupled equations into individual momentum-guess and
pressure-correction steps, which can then be solved efficiently by sparse iterative
Krylov solvers. The earliest pressure-correction schemes are those by Chorin
(1968) and Temam (1969), but the splitting error introduced in these can only be
reduced by using smaller time steps. Iterative pressure correction methods, such
as the incremental pressure-correction scheme, IPCS (Goda 1979; Kan 1986),
control the splitting error separately by optionally performing multiple pressure
corrections for each time step.

An overview of the literature related to pressure-correction methods can be
found in, e.g., Badia and Codina (2007) and J. L. Guermond, Minev, and Shen
(2006). The two main methods for implementing the equation splitting are the
differential splitting method, where the strong form in equation (II.1) is split
before discretisation, and the algebraic splitting method, which operates on the
discretised form in equation (II.2). One important difference between algebraic
and differential pressure-correction methods is the treatment of boundaries.
Differential methods—also known as continuous methods—require application
of boundary conditions when solving the pressure-correction equation. Algebraic
methods do not require any extra boundary conditions, but that does not mean
that the error in the pressure due to the splitting is lower. Both types of splitting
methods introduce splitting errors that typically show up most clearly near
the boundaries. J. L. Guermond, Minev, and Shen (2006) show that algebraic
versions of Chorin/Temam type splitting schemes enforce a Neumann boundary
condition (weakly) on the pressure where the velocity has a Dirichlet boundary
condition, just like the differential versions do explicitly when constructing the
weak form of the pressure-Poisson equation and applying boundary conditions
derived from the normal component of the velocity boundary condition.

Using the normal component of the viscous wall boundary condition, u·n = 0,
to construct the boundary condition for the pressure is compatible with the
continuity equation. This enables the exact incompressibility that we look for in
this comparison paper. It is possible to include the tangential velocity boundary
condition and obtain a Dirichlet boundary condition for the pressure as well, see
e.g. Orszag, Israeli, and Deville (1986). Using a Neumann boundary condition
for the pressure-Poisson equation is by far the most popular choice, and Sani
et al. (2006) show that when the Poisson equation for the pressure is solved
along with the momentum equation in a coupled manner, the results are exactly

85

II. Exactly incompressible DG FEM pressure-splitting schemes

the same as when the regular continuity equation is used instead—as long as
Neumann boundary conditions are applied for the pressure based on the normal
component of the velocity Dirichlet boundary condition. Since the equations
are not solved simultaneously, but through a time-splitting algorithm, there
will be errors that manifest most strongly near the boundaries. Karniadakis,
Israeli, and Orszag (1991) show that the thickness of the layer of numerical
pressure-splitting errors close to the boundary is proportional to

√
νγ1∆t. They

also show that the order of the time-differencing error in the velocity is at most
one order greater than the error in the boundary conditions, so a second order
time differencing scheme requires at least a first order treatment of the boundary
conditions of the pressure. It is this combination that is used in this paper, a
second order backwards differencing formulation, BDF2.

Solving the Navier–Stokes equations will in general require a choice of function
spaces for the velocity and pressure that satisfy an inf–sup stability criterion—
often called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition for conforming
finite elements. See, e.g., Di Pietro and Ern (2012) for details on how a similar
criterion is expressed for the broken polynomial spaces used herein. Splitting
the equations into momentum-guess and pressure-correction steps will in often
make the system solvable also for equal-order discretisations, which typically do
not satisfy inf–sup without additional stabilisation. That does not mean that
there is no instability or loss of convergence order. See e.g. J.-L. Guermond and
Quartapelle (1998) and Codina (2001) for more information. We have selected to
use an inf–sup stable function-space pair in this work (quadratic polynomials for
the velocity and linear for the pressure, P2P1), though the methods discussed are
general and work for higher–order element pairs such as P3P2, and equal order
such as P1P1 or P2P2—with the caveats about possible inf–sup instabilities and
loss of convergence order in mind, especially for small time steps.

In addition to the pressure-correction methods discussed above, many other
splitting methods for the Navier–Stokes equations exist, such as velocity-correction
methods (J. Guermond and Shen 2003; Kawahara and Ohmiya 1985), and the
more general Schur-complement methods (Schur 1917; Zhang 2005). The popular
PISO (Issa 1986) and PIMPLE (Weller et al. 1998) algebraic pressure-correction
techniques should also be mentioned, and we even implemented them in the
Ocellaris flow solver that we have used in this work. They are exactly mass
conserving, but unfortunately we were unable to make these converge with the
expected order for our higher-order DG discretisation, so they have been left
out of this comparison.

A prior comparison of algebraic and differential splitting methods in terms
of divergence can be found in Quarteroni, Saleri, and Veneziani (2000). They
compared differential and algebraic versions of the basic Chorin–Temam method,
as well as introducing the algebraic quasi-compressible Yosida method and
comparing it to a differential artificial compressibility method. They found that
the algebraic methods satisfied the original incompressibility constraint exactly,
while the differential methods did not. Satisfying the incompressibility constraint
just as well as the coupled system does not mean that the resulting velocity
fields were point-wise or element-wise divergence free, as the Yosida method

86

The DG FEM discretisation

introduces compressibility and the elements used for all the calculations were the
P1isoP2/P1 elements, which are not locally divergence free even in the coupled
case (Boffi et al. 2012).

In this paper we will look at the IPCS method on differential form in
section II.3 and on algebraic form in section II.4. The DG SIMPLE method
by Klein, Kummer, Keil, et al. (2015), Klein, Kummer, and Oberlack (2013),
and Klein, Müller, et al. (2016) based on the SIMPLE method by Patankar
and Spalding (1972) is described in section II.5. The effect of the choice of
pressure-splitting scheme on the divergence of the resulting velocity field is
discussed in section II.6, before the methods are compared on several benchmark
cases in section II.7. The DG FEM spatial discretisation and the temporal
scheme used in the numerical experiments are presented in section II.2. The
results in this paper are not dependent on the details of the numerical scheme.
The findings will hold for other methods, as long as discontinuous elements are
used for the pressure and exact incompressibility is achieved when the governing
equations are solved without pressure-velocity splitting. Exact incompressibility
implies exact mass conservation for incompressible flow, and requires that the
velocity field is pointwise divergence free inside each mesh cell and that the
normal velocity is single valued across internal mesh facets. The volume fluxes
across each cell’s facets will then sum to zero for all cells in the mesh.

II.2 The DG FEM discretisation

This section contains a brief summary of the DG FEM discretisation of the
governing equations (II.1) used to construct the block matrix in equation (II.2).
More details can be found in Landet, Mardal, and Mortensen (2020) which is
based on Cockburn, Kanschat, and Schötzau (2005), except for the elliptic term
where we have used the symmetric interior-penalty (SIP) method by Arnold
(1982), and not the local discontinuous Galerkin (LDG). Using SIP in this way has
also been done by Shahbazi, Fischer, and Ethier (2007) and Cockburn, Kanschat,
and Schötzau (2007). The exact details of the presented discretisation are not
important for the results of this paper. The numerical scheme can be substituted
for another numerical scheme as long as (i) the resulting mass matrix is block
diagonal, (ii) the pressure is discontinuous and requires continuity-enforcing
stabilisation of elliptic operators, and (iii) the velocity field is machine-precision
divergence-free when equation (II.2) is solved on coupled form by a direct solver.

The Navier–Stokes equations from equation (II.1) are first discretised in time
by use of values from previous time steps, (un,un−1), along with a suitable
choice of time stepping coefficients (γ1, γ2, γ3). The time steps are t = n∆t with
initial conditions at t = 0. We have used a second-order backwards-differencing
formulation, BDF2, where the coefficients are (γ1, γ2, γ3) = (3/2, −2, 1/2). If the
initial value at t = −∆t is not provided then coefficients (1, −1, 0) are used
for the first time step. The non-linearity of the convective term is handled
semi-implicitly by introducing an explicit convecting velocity, w = 2un − un−1.

87

II. Exactly incompressible DG FEM pressure-splitting schemes

The spatial differential equations are then

ρ

(
1

∆t (γ1u+ γ2u
n + γ3u

n−1) + (w · ∇)u
)

= ∇ · µ
(
∇u+ (∇u)T

)
−∇p,

(II.4)
∇ · u = 0.

Let T be the set of all cells in the mesh and S the set of all facets. Polynomial
function spaces of degree k on each cell K are denoted Pk(K). These have no
continuity at cell boundaries and no inherent boundary conditions. We use
calligraphic typeface to denote operators and sets, bold italic for vectors functions
and italic for scalar functions. Equation (II.4) is cast into the following form:
find u ∈ [P2(K)]D and p ∈ P1(K) such that

A(u,v;w) + B(p,v) = D(v) ∀ v ∈ [P2(K)]D, (II.5)
C(u, q) = E(q) ∀ q ∈ P1(K), (II.6)

in the tessellated domain T subject to

u = uD on the boundary facets, SD ⊂ S. (II.7)

The discontinuous Galerkin method works by breaking integrals over the
whole domain into a sum of integrals over each mesh cell K ∈ T , and defining
fluxes of the unknown functions between these cells. The average and jump
operators across an internal facet between two cells K+ and K− are defined as

{{u}} = 1
2(u+ + u−), (II.8)

Ju K = u+ − u−, (II.9)
Ju Kn = u+ · n+ + u− · n−. (II.10)

The convecting velocity w is Hdiv-conforming, i.e. the flux is continuous,
Jw Kn = 0. For exterior facets, let the connected cell be denoted K+ such that
n+ · Ju K = n+ · u+ = n · u. Take {{u}} = u and otherwise let all K− values be
zero on the boundary facets.

The momentum equation is discretised using the SIP method for the elliptic
term (Arnold 1982) and otherwise using the fluxes from Cockburn, Kanschat,
and Schötzau (2005). The flux of pressure is p̂ = {{p}} and the convective flux
ûw is a pure upwind flux. After multiplication with v and integration over
T , followed by integration by parts and application of the SIP method to the
viscosity; A can be found as the bilinear part containing u = un+1, B as the
bilinear part containing p, and D as the linear part of

∫
T

ρ

∆t (γ1u+ γ2u
n + γ3u

n−1)v dx (II.11)

−
∫
T
u · ∇ · (ρv ⊗w) dx +

∫
S
w · n+ ûw · J ρv K ds

88

The DG FEM discretisation

+
∫
T
µ
(
∇u+ (∇u)T

)
: ∇v dx +

∫
SI
κµ Ju K · Jv K ds

−
∫
S

(
{{
µ
(
∇u+ (∇u)T

)}}
· n+) · Jv K ds

−
∫
SI

(
{{
µ
(
∇v + (∇v)T

)}}
· n+) · Ju K ds

−
∫
T
p∇ · v dx +

∫
S
p̂n+ · Jv K ds+ 1

2

∫
T

(∇ ·w)u · v dx = 0.

On Dirichlet boundaries ûw is the upwind value. Depending on flow direction
this is either u or uD. On all boundaries take p̂ = p. The SIP penalty parameter
is selected based on Epshteyn and Rivière (2007) and Shahbazi, Fischer, and
Ethier (2007),

κµ = 3 µ
2
max
µmin

k(k + 1) max
K

(
SK
VK

)
, (II.12)

where the k is the polynomial order of the approximating polynomials, SK is
the cell surface area and VK the cell volume. The penalty parameter is doubled
on external facets.

Since the IPCS-D scheme is not exactly divergence free, the standard skew
symmetric term (Gresho 1991) is included in the weak form used for all the
methods. The term is the last integral in equation (II.11),

1
2

∫
T

(∇ ·w)u · v dx. (II.13)

The continuity equation is multiplied by q and integrated over T . The flux
of velocity is here ûp = {{u}}. After integration by parts C(u, q) and E(q) can
be found from ∫

S
ûp · n+ J q K ds −

∫
T
u · ∇q dx = 0. (II.14)

The non-zero E(q) results from using the boundary conditions in the flux,
ûp = uD on Dirichlet boundaries.

After solving equations (II.5) and (II.6) by one of the presented pressure-
splitting schemes, the resulting velocity field is projected into a space where it is
exactly divergence free. The resulting velocity field is pointwise divergence free
inside each cell and the normal velocities across internal facets are continuous.
This projection from weak to strong incompressibility requires only that the
discrete version of the weak incompressibility criterion on the form shown in
equation (II.14). The projection is described in Cockburn, Kanschat, and
Schötzau (2005). It is not necessary to perform the projection inside the pressure
iteration loops, it is run once as a post processing operation at the end of
each time step. This BDM-like projection is local to each cell, so the result is
computed by a dense solver on an element-by-element basis, see the paper by

89

II. Exactly incompressible DG FEM pressure-splitting schemes

Cockburn et al. for details showing that the projection is well-conditioned and
results in machine precision pointwise divergence-free velocities. The results
from the projection is used to compute the convecting velocities for the next
time step, and also in the time integration; i.e. the un-projected velocity is not
used afterwards.

II.2.1 Differential Poisson equation for the pressure

In the IPCS-D method, which will be described in section II.3, a Poisson equation
must be solved for the pressure,

∇ ·
(

1
ρ
∇p
)

= f. (II.15)

This equation is discretised with the SIP method, and the same penalty parameter
as in equation (II.12) is used, with µ replaced by ρ−1. The applied boundary
condition is

∇p · n = 0 (II.16)

on all boundaries. This is due to using Dirichlet boundary conditions for the
velocity everywhere. See, e.g., Gresho and Sani (1987), and the references in
the introduction to this work for more information related to the boundary
conditions for the pressure-Poisson equation.

After multiplying by the test function q ∈ P1[K], integrating over the domain,
performing integration by parts, and including the SIP stabilisation terms, the
result is

−
∫
T
∇p · ∇q dx+

∫
SI
q∇p · nds (II.17)

+
∫
SI

J q K {{∇p}} · n+ ds+
∫
SI

J∇p K {{q}} · n+ ds

+
∫
SI

J p K {{∇q}} · n+ ds−
∫
SI
κp J p K J q K ds =

∫
T
fq dx,

where SI is the set of all internal facets. The null space due to using pure
Neumann boundary conditions is removed in the Krylov solver by providing the
basis of the null space along with the system matrix (Balay et al. 2014). The
right-hand side will be the divergence of a known velocity field. This will be
discretised as shown in equation (II.14) to minimise the differences between the
differential and the algebraic methods.

The main difference between solving for the pressure this way, by a forming
an elliptic differential equation, instead of performing the elliptic-like algebraic
operation used in the IPCS-A method described in section II.3, is the introduction
of the penalty parameter. The need for stabilisation of elliptic operators in DG
methods means that the resulting discrete elliptic matrices are different between
the algebraic and the differential methods. The consequences of this are explored
in section II.6 and shown numerically in section II.7.

90

The IPCS-D method

II.3 The IPCS-D method

The incremental pressure-correction scheme on differential form (IPCS-D) is
an iterative version of the classic Chorin–Temam pressure correction scheme
(Chorin 1968; Goda 1979; Temam 1969). The method begins with solving the
momentum equation for an approximate velocity field u∗ by use of a guessed
pressure field, p∗,

ρ

(
1

∆t (γ1u
∗ + γ2u

n + γ3u
n−1) + (w · ∇)u∗

)
= ∇ · µ

(
∇u∗ + (∇u∗)T

)
−∇p∗.

(II.18)

A splitting error is now introduced. Make the assumption that the true
velocity u and the velocity estimate u∗ are close enough so that

(w · ∇)(u− u∗) ≈ 0 (II.19)
∇ · µ

(
∇(u− u∗) + (∇(u− u∗))T

)
≈ 0. (II.20)

By subtracting equation (II.18) from the true momentum equation (II.4) and
using the assumptions in equations (II.19) and (II.20) the result is

1
∆t (γ1u− γ1u

∗) = −1
ρ
∇(p− p∗). (II.21)

The velocity field should be divergence free, but the velocity estimate u∗
is not due to having used an approximate pressure field p∗, and not the true
velocity field p. The continuity equation, ∇ ·u = 0, is now used to eliminate the
unknown velocity field u from equation (II.21) by taking the divergence,

∇ ·
(

∆t
γ1ρ
∇(p− p∗)

)
= ∇ · u∗, (II.22)

which gives a Poisson equation for the unknown pressure p with the guessed
pressure p∗ and the velocity estimate u∗ as known coefficients. When the pressure
p is found it can be put back into equation (II.21) to find the updated velocity
field, u.

The IPCS-D algorithm

1. Guess p∗ and solve equation (II.18) for u∗.

2. Solve equation (II.22) for p.

3. Compute the updated velocity u from equation (II.21).

4. Check for convergence by computing the residual ru = ||u∗ − u|| and
optionally go to step 1 using p as a new guess for the pressure if ru is not
sufficiently small.

91

II. Exactly incompressible DG FEM pressure-splitting schemes

II.4 The IPCS-A method

The incremental pressure-correction scheme on algebraic form (IPCS-A) starts
from the Navier–Stokes equations on block-matrix form, as can be seen in
equation (II.2). The momentum equation can be solved for an approximate
velocity field u∗ by use of a guessed pressure field p∗,

Au∗ = d−Bp∗. (II.23)

A splitting error is now introduced. First let A = M+R where M is a scaled
mass matrix resulting from the assembly of the first term in equation (II.3), and
R contains the convective and diffusive operators. Then make the assumption
that R(u − u∗) ≈ 0 and use this when subtracting equation (II.23) from the
first line of equation (II.2), giving

M(u− u∗) = −B(p− p∗). (II.24)

The matrix M is block diagonal and can easily be inverted. Use this property
and the divergence free criterion, Cu = e, to remove the unknown u from
equation (II.24)

e−Cu∗ = −CM−1B(p− p∗). (II.25)

Reorganising equation (II.25) results in an equation for p

CM−1Bp = CM−1Bp∗ − e + Cu∗. (II.26)

The velocity u can be recovered without solving a linear system, simply
by substituting the pressure p from the solution of equation (II.26) into equa-
tion (II.24),

u = −M−1B(p− p∗). (II.27)

The IPCS-A algorithm

1. Guess p∗ and solve equation (II.23) for u∗.

2. Solve equation (II.26) for p.

3. Compute the updated velocity u from equation (II.27).

4. Check for convergence by computing the residual ru = ||u∗ − u|| and
optionally go to step 1 using p as a new guess for the pressure if ru is not
sufficiently small.

92

The SIMPLE method

II.5 The SIMPLE method

This description is a summary of the method presented in Klein, Kummer,
and Oberlack (2013), the semi-implicit method for pressure-linked equations,
SIMPLE. The method starts with the Navier–Stokes equations on algebraic
block matrix form, equation (II.2). A guess p∗ is made and inserted into the
governing equations which can be solved for an estimated velocity field, u∗,

Au∗ = d−Bp∗, (II.28)
Cu∗ = e + e∗, (II.29)

where e∗ is not zero when p∗ is not a perfect guess due to ∇·u∗ 6= 0. Subtracting
these equations from equation (II.2) and defining corrections û = u − u∗ and
p̂ = p− p∗ gives

Aû = −Bp̂, (II.30)
Cû = −e∗. (II.31)

A splitting error is now introduced. Construct a matrix Ã ≈ A where Ã
approximates A, but is much easier to invert. A diagonal or block diagonal
version of A is used as an approximation in the numerical examples below. Note
that this approximation allows the time derivative to be removed for steady-state
problems. This is not true for the IPCS-A method, where we must require
M 6= 0. The velocity correction in equation (II.30) can then be approximated as

û = −Ã−1Bp̂, (II.32)

and this approximation can be used to solve for p̂ by substitution into equa-
tion (II.31) [

CÃ−1B
]

p̂ = e∗ = Cu∗ − e. (II.33)

The SIMPLE method is not guaranteed to converge without under-relaxation
in the updates of p and u due to the approximate Ã. The under-relaxation of
the pressure is performed explicitly,

p = p∗ + αpp̂, (II.34)

while an implicit scheme is used for the velocity,[
1− αu
αu

Ã + A
]

u∗ = d−Bp∗ +
[

1− αu
αu

Ã
]

u∗prev, (II.35)

with 0 < (αp, αu) < 1.

The SIMPLE algorithm

1. Solve for u∗ using equation (II.35) starting with guesses u∗prev and p∗

93

II. Exactly incompressible DG FEM pressure-splitting schemes

2. Find p̂ using equation (II.33)

3. Update p using equation (II.34)

4. Update u using equation (II.32)

5. Check for convergence by computing the residual ru = ||u∗ − u|| and
optionally go to step 1 with new guesses for u∗ and p∗

A note on constructing Ã: It is natural to think that the closer Ã is to A,
while still being easy to invert, the more accurate each iteration will be. A
more accurate approximation should hence result in fewer iterations for a given
tolerance. We have tried with a block-diagonal matrix Ã, using a dense linear
algebra library to invert the single-element dense blocks, and also tested bundling
neighbouring elements into multi-element dense blocks. As long as these blocks
are not overly large, the time to construct Ã−1 will not dominate the iteration
procedure, as this is done once per time step. What we found is that contrary
to the intuition, and fully in line with Klein, Kummer, and Oberlack (2013), the
closer the matrix Ã is to the identity matrix, the more efficient the iteration
procedure becomes. Results comparing a diagonal and a block-diagonal Ã matrix
are shown in figure II.1. In these results only one element is included in each
block, but the trend is the same when including more, the diagonal version
converges faster.

II.6 Exact mass conservation

The numerical representation of the velocity field will be divergence free to the
precision of the discrete operators if Cu− e = 0. In the IPCS-A method this is
ensured on the algebraic level,

Cu− e = Cu−Cu∗ + Cu∗ − e (II.36)
(II.24)= CM−1B(p− p∗) + Cu∗ − e
(II.25)= 0.

The IPCS-D pressure Poisson equation (II.22) is not equivalent to equa-
tion (II.25) due to the stabilisation jump terms which will introduce a residual
divergence in the velocity field, even if the boundary conditions applied to
equation (II.22) are in perfect agreement with equation (II.26). The reason is
that the assembled matrix from the elliptic operator with stabilisation does not
satisfy equation (II.25),

AssembleDG,κp

(
∇ · (∆t

γ1ρ
∇•)

)
6= CM−1B. (II.37)

Other elliptic DG FEM discretisations like LDG and NIPG will also contain
stabilisation terms (Arnold et al. 2002), and will hence have the same problem.

94

Numerical experiments

A similar argument is shown in Klein, Kummer, Keil, et al. (2015). They also
show that the SIMPLE method is exactly divergence free with an argument
similar to equation (II.36).

II.7 Numerical experiments

The weak form described in section II.2 is implemented with quadratic discon-
tinuous Galerkin elements for the velocity (DG2) and linear DG elements for
the pressure (DG1). The numerical experiments are run with iterative solvers
from PETSc 3.8 (Balay et al. 2014). All results are from simulations running in
parallel with MPI on the Abel computational cluster at the University of Oslo.
The GMRES iterative solver has been used for both velocities and pressures.
The relative and absolute error criteria are both 1× 10−15 with a maximum of
100 Krylov iterations. Convergence in the Krylov solver is typically achieved in
less than 100 Krylov iterations for all but the first pressure-correction iteration
in the first time step.

The additive-Schwarz method (ASM) is used to precondition the velocity
solvers and for the pressure an algebraic multigrid (AMG) preconditioner is
applied, we use HYPRE BoomerAMG. The solvers are set up to use the pre-
vious solution as the initial guess. The additive-Schwarz preconditioner uses
PETSc’s default settings, which is incomplete LU factorization on each CPU.
The BoomerAMG preconditioner also uses PETSc’s default settings.

All the results shown below have been produced by Ocellaris (Landet 2019b;
Landet 2019c), a single- and multiphase DG FEM Navier–Stokes solver. Input
files for Ocellaris and post-processing scripts, which can be used to reproduce all
figures shown in this paper, can be found on Zenodo in Landet (2019a).

II.7.1 Taylor–Green 2D flow

The Taylor–Green vortex is an analytical solution to the 2D incompressible
Navier–Stokes equations. The solution is

u = − sin(πy) cos(πx) exp(−2π2νt),
v = sin(πx) cos(πy) exp(−2π2νt), (II.38)
p = −1/4 ρ(cos 2πx+ cos 2πy) exp(−4π2νt).

Spatial convergence of the pressure-correction methods is examined on a
regular grid. The domain, (x, y) ∈ [0, 2]× [0, 2], is divided into N ×N rectangles
that are then subdivided into two triangles each. Grid sizes N = {8, 16, 24, 32}
are used to study the spatial convergence rate. The time step is ∆t = 0.01
and the numerical results are compared to the analytical expressions at t = 1.0.
Exactly 160 pressure-correction iterations are performed for each time step,
which is sufficient for all methods, see figure II.1. The physical parameters
applied are ρ = 1.0 and ν = 0.005.

In the SIMPLE method an under-relaxation factor of αu = 0.7 is used for
the velocity and αp = 1.0 is used for the pressure. This is in line with Klein,

95

II. Exactly incompressible DG FEM pressure-splitting schemes

Kummer, and Oberlack (2013). Setting both under-relaxation factors to 1.0 (no
under-relaxation) as was done in Klein, Kummer, Keil, et al. (2015) is unstable
for the current simulations and causes the iteration procedure to blow up. A
diagonal Ã matrix is used with no lumping.

5 10 20 40 80 160
#iterations

10 4

10 3

10 2

L 2
er

ro
ru

IPCS-A
IPCS-D
SIMPLE
SIMPLE-B
SIMPLE = 0.5

Figure II.1: Taylor–Green test case: effect of the number of pressure-correction
iterations per time step. The SIMPLE method is tested with a block-diagonal
Ã matrix (one block for each cell, ‘SIMPLE-B’) in addition the the diagonal Ã
used for the rest of the simulations. A set of simulations with under-relaxation
parameters (αu, αp) = (0.5, 0.5) is included in addition to the (αu, αp) = (0.7, 1.0)
choice used for the rest of the simulations.

The number of pressure-correction iterations required to reach convergence
is shown in figure II.1. The SIMPLE method requires far more iterations in
order to converge than the IPCS methods. The influence of some of the tunable
parameters in the SIMPLE method are also shown in the figure. Some sensitivity
is found both in regard to how the approximate inverse of A is computed, and
in the choice of under-relaxation parameters. The effect of these choices are
significantly smaller than the effect of changing the pressure-correction method.

Spatial convergence rates of the velocity and pressure can be seen in fig-
ures II.2a and II.2b. The velocity converges with the expected order while
the pressure super-converges due to the regular mesh. It is normal to observe
super-convergence on highly regular meshes (Guillén-González and Tierra 2012).
The divergence of the velocity field is shown in figure II.2c. The divergence has
been projected to a piecewise constant (DG0) function space before computing

96

Numerical experiments

the L2 norm. The IPCS-D method gives a velocity field with approximately
ten orders of magnitude higher divergence than IPCS-A and SIMPLE. The
divergence is also computed in the space of the velocity, piecewise quadratics
(DG2), and this is shown in figure II.2d. The same behaviour is shown here,
though the error is higher.

0.354 0.177 0.118 0.088
h

10 3

10 2

L 2
er

ro
ru

IPCS-A
IPCS-D
SIMPLE
Rate 3.0

(a) Velocity

0.354 0.177 0.118 0.088
h

10 3

10 2

10 1

L 2
er

ro
rp

IPCS-A
IPCS-D
SIMPLE
Rate 3.0
Rate 2.3

(b) Pressure

0.354 0.177 0.118 0.088
h

10 12

10 10

10 8

10 6

10 4

10 2

100

L
er

ro
r

u

IPCS-A
IPCS-D
SIMPLE

(c) Divergence of u in DG0

0.354 0.177 0.118 0.088
h

10 9

10 7

10 5

10 3

10 1

101

L
er

ro
r

u

IPCS-A
IPCS-D
SIMPLE

(d) Divergence of u in DG2

Figure II.2: Taylor–Green test case: spatial convergence.

Studying temporal convergence for the selected Taylor–Green flow requires
a very fine spatial discretisation since the error in the time stepping routine is
much smaller than the spatial error. The results obtained with a very fine grid
where N = 200 is shown in figure II.3. The time step is gradually refined with
∆t = {2.00, 1.00, 0.50, 0.25}, and the numerical solution is compared with the
analytical at t = 6.0. The number of pressure-correction iterations per time step
is 200 and the number of Krylov solver iterations is also set to 200. This is a
necessary increase to achieve the theoretical convergence rate for the velocity.
The pressure will converge at a rate slightly above 2.0 with fewer iterations, but
even with the fine spatial discretisation, the convergence rate of the velocity
is slightly below 2.0 and the Krylov solver is never fully converged even after

97

II. Exactly incompressible DG FEM pressure-splitting schemes

200 GMRES iterations per pressure-correction iteration. Between refinements
∆t = 0.5 and ∆t = 0.25, the observed convergence rate of the velocity is 1.97.

2.000 1.000 0.500 0.250
t

10 4

10 3

L 2
er

ro
ru

IPCS-A
IPCS-D
SIMPLE
Rate 2.0

(a) Velocity

2.000 1.000 0.500 0.250
t

10 3

10 2

L 2
er

ro
rp

IPCS-A
IPCS-D
SIMPLE
Rate 2.0

(b) Pressure

Figure II.3: Taylor–Green test case: temporal convergence.

II.7.2 Ethier–Steinman 3D flow

An analytical solution to the 3D incompressible Navier–Stokes equations is given
by Ethier and Steinman (1994, equation 15) as

u = −ae−b
2νt[eax sin(ay + bz) + eaz cos(ax+ by)],

v = −ae−b
2νt[eay sin(az + bx) + eax cos(ay + bz)],

v = −ae−b
2νt[eaz sin(ax+ by) + eay cos(az + bx)],

p = −a
2

2 e−2b2νt[e2ax + e2ay + e2az − p̄ (II.39)

+ 2 sin(ax+ by) cos(az + bx)ea(y+z)

+ 2 sin(ay + bz) cos(ax+ by)ea(z+x)

+ 2 sin(az + bx) cos(ay + bz)ea(x+y)].

A constant correction for the pressure, p̄, is included in equation (II.39)
to ensure that the average pressure is zero. This is enforced in the linear
solver to remove the pressure kernel from the system. On a domain (x, y, z) ∈
[−1, 1]× [−1, 1]× [−1, 1] this gives

p̄ = [−15π2 − 32 + 32eπ + 15π2eπ](eπ2 5π3)−1. (II.40)

Dirichlet boundary conditions are applied to the velocity. The domain is
divided into a regular mesh with N ×N ×N cubes which are further subdivided
into six tetrahedra in each cube. The time step is ∆t = 0.001 and the numerical
solution is compared to the analytical at time t = 0.1.

98

Numerical experiments

0.866 0.433 0.289 0.217
h

10 4

10 3

L 2
er

ro
ru

IPCS-A
IPCS-D
SIMPLE
Rate 3.0

(a) Velocity

0.866 0.433 0.289 0.217
h

10 2

10 1

100

L 2
er

ro
rp

IPCS-A
IPCS-D
SIMPLE
Rate 2.1

(b) Pressure

0.866 0.433 0.289 0.217
h

10 13

10 11

10 9

10 7

10 5

10 3

10 1

L
er

ro
r

u

IPCS-A
IPCS-D
SIMPLE

(c) Divergence of u in DG0

Figure II.4: Ethier–Steinman test case: spatial convergence.

The spatial convergence of the methods in Ethier–Steinman flow can be
seen in figure II.4. The results for the IPCS methods are presented with 100
pressure-correction iterations per time step, but the results differ only in the third
significant digit from the results obtained with only 5 iterations. The SIMPLE
method has been run with αu = αp = 0.5 to get stable iterations at the finer grid
resolutions where using αu = 0.7 and αp = 1.0 would blow up. The SIMPLE
results are produced using 500 pressure-correction iterations per time step. This
gives an optimal convergence rate for the pressure at all tested mesh resolutions
and for the velocity at all but the finest resolution. With 100 pressure-correction
iterations, only two points would fall on the line in figure II.4a. The divergence
error norms for the algebraic methods are again close to machine precision. The
IPCS-D divergence error is much higher, but getting smaller with increasing
mesh resolution, as expected.

99

II. Exactly incompressible DG FEM pressure-splitting schemes

II.7.3 Efficiency

Producing a fair wall-clock comparison of the run time of the pressure correction
methods is more tricky than reporting convergence results. For the convergence
rates, it only matters that the Krylov iterations inside each pressure-correction
iteration converge in the end, not how many iterations are needed for convergence.
The total running time is totally dominated by the time spent in the momentum-
prediction and pressure-correction steps, and except for matrix assembly, which
takes around 1% of the wall clock time, this is all time spent in the Krylov
solvers. Tweaking the preconditioner parameters used for the Krylov solvers
in each method may improve one of the methods more than the other, causing
this comparison—which uses the same preconditioner parameters for all three
methods—to not be very relevant. With that caveat in mind, the time spent in
the two steps can be seen in figure II.5.

IPCS-D IPCS-A SIMPLE
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

[s
]

Momentum prediction
Pressure correction

Figure II.5: The average wall clock time spent in the two pressure correction
steps. Ethier–Steinman flow, N=12, 100 pressure corrections in each of the 100
time steps, 16 CPUs. The minimum average times from five full simulations
of each method have been used. The noticeable differences between the three
methods are very repeatable.

The total time per pressure-correction iteration is less in the SIMPLE method
than in the IPCS methods, which is to be expected due to the under-relaxation
procedure causing the unknown vectors to be closer to the initial guesses. The
IPCS-D method spends more time in the pressure-correction than the IPCS-A
method. The reason may be that the penalty parameter, which ensures coercivity,
also makes the resulting matrix more and more ill-conditioned as the penalty
parameter increases, although the parameter we have used, equation (II.12),
should be close to optimal. The momentum-prediction step takes significantly
more time in IPCS-A than in IPCS-D. The reason may be related to the skew

100

Conclusions

symmetric convective term, equation (II.13), making the IPCS-D A matrix
more diagonal dominant. Unfavourable right-hand sides may also require more
iterations.

It should be noted that the results in figure II.5 must be seen in light
of figure II.1. The SIMPLE method requires far more iterations to achieve
convergence, so while it is faster per iteration it is much slower if the metric is
time to solution and not time per iteration.

II.8 Conclusions

This paper compares three existing pressure correction methods, two algebraic
and one on differential form. We show algebraically why the algebraic pressure
correction methods retain the machine-precision-zero divergence at the end of
each iteration, while differential methods of formulating the pressure-Poisson
equation in DG FEM must include stabilising terms that cause a residual
divergence. This error only disappears in the limit of an exactly resolved solution
where there are no longer any inter-element jumps. For practical purposes this
will never happen.

For both the 2D (Taylor–Green, figure II.2) and 3D (Ethier–Steinman, fig-
ure II.4) numerical experiments, the convergence results show that the algebraic
pressure-splitting methods are exactly divergence free, while the differential
IPCS-D method is not. The IPCS methods converge perfectly with only five
pressure-correction iterations per time step for both the 2D and the 3D test cases,
while the SIMPLE method requires between 10 and 100 times more iterations to
produce converged results. The SIMPLE method spends slightly less time per
iteration (figure II.5), but is not fast enough to outweigh the vastly increased
number of iterations required to obtain converged results. For mass conserving
pressure-correction iterations, the IPCS-A method is most efficient, and hence
the recommended option among the three tested methods.

Acknowledgements

The simulations were performed on resources provided by UNINETT Sigma2,
the national infrastructure for high performance computing and data storage in
Norway.

References

Amestoy, P. R., Duff, I. S., et al. (2001). “A Fully Asynchronous Multifrontal
Solver Using Distributed Dynamic Scheduling”. SIAM Journal on Matrix
Analysis and Applications 23.1, pp. 15–41.

Amestoy, P. R., Guermouche, A., et al. (2006). “Hybrid scheduling for the parallel
solution of linear systems”. Parallel Computing 32.2, pp. 136–156.

Arnold, D. N. (1982). “An interior penalty finite element method with discontin-
uous elements”. SIAM journal on numerical analysis 19.4, pp. 742–760.

101

II. Exactly incompressible DG FEM pressure-splitting schemes

Arnold, D. N. et al. (2002). “Unified Analysis of Discontinuous Galerkin Methods
for Elliptic Problems”. SIAM J. Numer. Anal. 39.5, pp. 1749–1779.

Badia, S. and Codina, R. (2007). “Algebraic pressure segregation methods for the
incompressible Navier–Stokes equations”. Archives of Computational Methods
in Engineering 15.3, pp. 1–52.

Balay, S. et al. (2014). PETSc Users Manual. ANL-95/11-Revision 3.5.
Boffi, D. et al. (2012). “Local Mass Conservation of Stokes Finite Elements”.

Journal of Scientific Computing 52.2, pp. 383–400.
Chorin, A. J. (1968). “Numerical solution of the Navier-Stokes equations”.

Mathematics of computation 22.104, pp. 745–762.
Cockburn, B., Kanschat, G., and Schötzau, D. (2005). “A locally conservative

LDG method for the incompressible Navier-Stokes equations”. Mathematics
of Computation 74.251, pp. 1067–1096.

— (2007). “A Note on Discontinuous Galerkin Divergence-free Solutions of the
Navier–Stokes Equations”. Journal of Scientific Computing 31.1-2, pp. 61–73.

Codina, R. (2001). “Pressure Stability in Fractional Step Finite Element Methods
for Incompressible Flows”. Journal of Computational Physics 170.1, pp. 112–
140.

Di Pietro, D. A. and Ern, A. (2012). Mathematical Aspects of Discontinuous
Galerkin Methods. Springer.

Epshteyn, Y. and Rivière, B. (2007). “Estimation of penalty parameters for
symmetric interior penalty Galerkin methods”. Journal of Computational
and Applied Mathematics 206.2, pp. 843–872.

Ethier, C. R. and Steinman, D. A. (1994). “Exact fully 3D Navier–Stokes solutions
for benchmarking”. International Journal for Numerical Methods in Fluids.

Fletcher, R. (1976). “Conjugate gradient methods for indefinite systems”. In:
Numerical Analysis. Ed. by Watson, G. A. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, pp. 73–89.

Goda, K. (1979). “A multistep technique with implicit difference schemes for
calculating two- or three-dimensional cavity flows”. Journal of Computational
Physics 30.1, pp. 76–95.

Gresho, P. M. (1991). “Some current CFD issues relevant to the incompressible
Navier-Stokes equations”. Computer Methods in Applied Mechanics and
Engineering 87.2, pp. 201–252.

Gresho, P. M. and Sani, R. L. (1987). “On pressure boundary conditions for the
incompressible Navier-Stokes equations”. International Journal for Numerical
Methods in Fluids 7.10, pp. 1111–1145.

Guermond, J. L., Minev, P., and Shen, J. (2006). “An overview of projection
methods for incompressible flows”. Computer Methods in Applied Mechanics
and Engineering 195.44, pp. 6011–6045.

Guermond, J.-L. and Quartapelle, L. (1998). “On stability and convergence
of projection methods based on pressure Poisson equation”. International
Journal for Numerical Methods in Fluids 26.9, pp. 1039–1053.

Guermond, J. and Shen, J. (2003). “Velocity-Correction Projection Methods for
Incompressible Flows”. SIAM Journal on Numerical Analysis 41.1, pp. 112–
134.

102

References

Guillén-González, F. and Tierra, G. (2012). “Superconvergence in velocity and
pressure for the 3D time-dependent Navier-Stokes Equations”. SeMA Journal
57.1, pp. 49–67.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. Vol. 49. 1. NBS.

Issa, R. (1986). “Solution of the implicitly discretised fluid flow equations by
operator-splitting”. Journal of Computational Physics 62.1, pp. 40–65.

Kan, J. van (1986). “A second-order accurate pressure-correction scheme for
viscous incompressible flow”. SIAM journal on scientific and statistical com-
puting 7.3, pp. 870–891.

Karniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). “High-order split-
ting methods for the incompressible Navier-Stokes equations”. Journal of
Computational Physics 97.2, pp. 414–443.

Kawahara, M. and Ohmiya, K. (1985). “Finite element analysis of density flow
using the velocity correction method”. International Journal for Numerical
Methods in Fluids 5.11, pp. 981–993.

Klein, B., Kummer, F., Keil, M., et al. (Apr. 2015). “An extension of the
SIMPLE based discontinuous Galerkin solver to unsteady incompressible
flows”. International Journal for Numerical Methods in Fluids 77.10, pp. 571–
589.

Klein, B., Kummer, F., and Oberlack, M. (Mar. 2013). “A SIMPLE based
discontinuous Galerkin solver for steady incompressible flows”. Journal of
Computational Physics 237, pp. 235–250.

Klein, B., Müller, B., et al. (July 2016). “A high-order discontinuous Galerkin
solver for low Mach number flows”. International Journal for Numerical
Methods in Fluids 81.8, pp. 489–520.

Landet, T. (2019a). Input files and plots. Zenodo: 10.5281/zenodo.2556909.
— (2019b). “Ocellaris: a DG FEM solver for free-surface flows”. The Journal of

Open Source Software 4.35, p. 1239.
— (2019c). The Ocellaris finite element solver for free surface flows. Ver-

sion 2019.0.1. www.ocellaris.org.
Landet, T., Mardal, K.-A., and Mortensen, M. (2020). “Slope limiting the

velocity field in a discontinuous Galerkin divergence-free two-phase flow
solver”. Computers & Fluids 196, p. 104322.

Li, X. et al. (Sept. 1999). SuperLU Users’ Guide. Tech. rep. LBNL-44289.
crd.lbl.gov/~xiaoye/SuperLU. Lawrence Berkeley National Laboratory.

Li, X. S. (Sept. 2005). “An Overview of SuperLU: Algorithms, Implementation,
and User Interface”. ACM Transactions on Mathematical Software 31.3,
pp. 302–325.

Li, X. S. and Demmel, J. W. (2003). “SuperLU_DIST: A Scalable Distributed-
memory Sparse Direct Solver for Unsymmetric Linear Systems”. ACM Trans.
Math. Softw. 29.2, pp. 110–140.

Orszag, S. A., Israeli, M., and Deville, M. O. (1986). “Boundary conditions for
incompressible flows”. Journal of Scientific Computing 1.1, pp. 75–111.

103

http://doi.org/10.5281/zenodo.2556909
https://www.ocellaris.org/
http://crd.lbl.gov/~xiaoye/SuperLU/

II. Exactly incompressible DG FEM pressure-splitting schemes

Patankar, S. V. and Spalding, D. B. (1972). “A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows”. Interna-
tional Journal of Heat and Mass Transfer 15.10, pp. 1787–1806.

Quarteroni, A., Saleri, F., and Veneziani, A. (2000). “Factorization methods for
the numerical approximation of Navier–Stokes equations”. Computer Methods
in Applied Mechanics and Engineering 188.1, pp. 505–526.

Saad, Y. and Schultz, M. (1986). “GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems”. SIAM Journal on
Scientific and Statistical Computing 7.3, pp. 856–869.

Sani, R. L. et al. (2006). “Pressure boundary condition for the time-dependent
incompressible Navier–Stokes equations”. International Journal for Numerical
Methods in Fluids 50.6, pp. 673–682.

Schur, I. (1917). “Über Potenzreihen, die im Innern des Einheitskreises beschränkt
sind”. Journal für die reine und angewandte Mathematik 147, pp. 205–232.

Shahbazi, K., Fischer, P. F., and Ethier, C. R. (2007). “A high-order discontinuous
Galerkin method for the unsteady incompressible Navier–Stokes equations”.
Journal of Computational Physics 222.1, pp. 391–407.

Temam, R. (1969). “Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires (II)”. Archive for rational
mechanics and analysis 33.5, pp. 377–385.

Vorst, H. van der (1992). “Bi-CGSTAB: A Fast and Smoothly Converging Variant
of Bi-CG for the Solution of Nonsymmetric Linear Systems”. SIAM Journal
on Scientific and Statistical Computing 13.2, pp. 631–644.

Weller, H. G. et al. (Nov. 1998). “A tensorial approach to computational con-
tinuum mechanics using object-oriented techniques”. Computers in Physics
12.6, pp. 620–631.

Zhang, F., ed. (2005). The Schur Complement and Its Applications. Numerical
Methods and Algorithms. Springer US.

104

III

Paper III

Ocellaris: a discontinuous
Galerkin finite element solver for
two-phase flows with high density
differences

Tormod Landet, Mikael Mortensen

Abstract

In free-surface flows, such as breaking ocean waves, the momentum field
will have a discontinuity at the interface between the two immiscible
fluids, air and water, but still be smooth in most of the domain. Using
a higher-order numerical method is more efficient than increasing the
number of low-order computational cells in areas where the solution is
smooth, but higher-order approximations cause convective instabilities at
discontinuities. In Ocellaris we use slope limiting of discontinuous Galerkin
solutions to stabilise finite element simulations of flows with large density
jumps, which would otherwise blow up due to Gibbs oscillations resulting
from approximating a factor 1000 sharp jump (air to water) by higher-order
shape functions.

We have previously shown a slope-limiting procedure for velocity fields
that is able to stabilise 2D free-surface simulations running on a single
CPU. In this paper our solver is extended to 3D and coupled to an algebraic
pressure-correction scheme that retains the exact incompressibility of the
direct solution used in the 2D simulations. We have tested the method
on a common 3D dam-breaking test case and compared the free-surface
evolution and impact pressures to experimental results. We then include
an existing forcing-zone approach in order to simulate a surface-piercing
vertical cylinder in an infinite wave field. In both cases the free-surface
elevation, forces, and pressures compare well with published experiments.
The Ocellaris solver is available as an open-source and well-documented
program along with the input files needed to replicate the included results
(www.ocellaris.org).

107

https://www.ocellaris.org/

III. High-density-ratio two-phase flow simulations in 3D

III.1 Introduction

Increasing the polynomial approximation order is more efficient than increasing
the number of computational cells when solving partial differential equations
(PDEs) where the solution is smooth (Babuška and Dorr 1981). Performing
more work locally in higher-order cells is also advantageous for today’s parallel
computers (Huerta et al. 2013; R. M. Kirby, Sherwin, and Cockburn 2012;
Kubatko et al. 2009). However, for equations with convective operators, a jump
in the solution or the coefficients will cause nonlinear convective instabilities—
spurious Gibbs oscillations at discontinuities—that will eventually destroy the
solution if the ratio between the high and low sides of the jump is large. Linear
numerical schemes, such as the discontinuous Galerkin finite element method
(DG FEM), produces linear algebraic equations from discretisation of linear
PDEs. Such linear schemes cannot guarantee convective stability if they are not
monotonic, and a linear monotonic scheme must be first-order and is hence highly
dissipative (Harten 1983; Krivodonova et al. 2004). One way to get around the
problem of having to chose between high-order approximations and convective
stability is to make the scheme nonlinear by the inclusion of a nonlinear cell-wise
projection operator, a slope limiter.

We have previously shown that component-wise slope limiters can be used
on the convected velocity field to stabilise two-phase flow simulations with large
density jumps (Landet, Mardal, and Mortensen 2020). Most existing methods
used for the simulation of air/water two-phase flows employ low-order finite
volume methods for the discretisation of the governing PDEs. In these methods
the solution is piecewise constant, and the convective instabilities can be dealt
with by using a flux limiter—a non-linear facet-local parameter that blends the
upwind and downwind fluxes to obtain stability without excessive diffusion (Hirt
and Nichols 1981; Kleefsman et al. 2005; Popinet 2003; Ubbink 1997; Weller
et al. 1998).

Ocellaris solves the variable-density Navier–Stokes equations for two-phase
flow (section III.2). The numerical method is based on a higher-order interior-
penalty DG FEM (section III.3) with a component-wise velocity slope limiter for
the convected velocity field (section III.3.4) and an algebraic pressure-correction
method for the pressure–velocity coupling (section III.4). A regular wave model
based on a stream-function formulation is used for initial and boundary values for
water-wave simulations. The details of this model are presented in section III.5,
including how the stream-function approach can be used to specify one velocity
field, valid in both the air and water phases, which is divergence free, satisfies all
boundary conditions, and conforms to the free surface. Section III.5 also describes
how a forcing-zone approach is used for damping free-surface disturbances near
the boundaries in order to avoid unwanted reflections. The implementation of
Ocellaris is briefly described in section III.6, and the main steps required to set
up an Ocellaris simulation are described in section III.6.1.

The BlendedAlgebraicVOF multiphase model used in this paper computes
a piecewise constant density distribution based on an algebraic VOF method
(Muzaferija et al. 1998). Other multiphase models are available, and it is also

108

Mathematical model of free-surface flow

possible to define a custom model in the Ocellaris simulation input file (YAML
format, see Landet (2019b) for details). Using such a very simple model is
not optimal, but the velocity slope limiter will lower the effective order of the
obtained velocities at the density jump, so perhaps not much is lost in terms of
obtainable accuracy from using a relatively simple free-surface capturing method.
An interface-capturing method that can take full advantage of the high order
of the convecting velocity field is an interesting research topic, and would most
likely require fewer cells in the free-surface region than what is used here. Still,
the results show good agreement with lab experiments, and away from the free
surface the overall method retains the high-order approximation properties of
the Navier–Stokes discretisation since the true density field is constant here.

Section III.7.1 shows the performance of the Ocellaris solver on a 3D dam-
breaking test case. The test is meant to simulate a “green-water” event, a
large wave breaking over a ship deck and impacting the cargo, in this case a
single container outfitted with pressure gauges. The results show that both the
free-surface evolution and the impact pressures compare well with published
experiments. The second test case, presented in section III.7.2, is a vertical
cylinder exposed to steep regular waves. This is meant to simulate wave loads on
an offshore windmill or another type of slender surface-piercing marine structure.
This test shows good agreement in regard to the total force on the cylinder
when compared to laboratory experiments. The test also shows that the existing
forcing-zone approach summarised in section III.5 works well in a DG FEM
setting to dampen free-surface disturbances near the inlet and outlet of the
numerical wave tank. Finally, the discussion in section III.8 concludes that
Ocellaris’ high-order multiphase flow solver can successfully simulate complex
3D air/water free-surface flows at high Reynolds numbers.

III.2 Mathematical model of free-surface flow

Ocellaris solves the variable-density Navier–Stokes equations (III.1) to (III.3)
with piecewise constant density and viscosity. Standard notation is used for the
unknown functions; u is the velocity, p is the pressure, and ρ is the fluid density.
The coefficients are the dynamic viscosity µ and the acceleration of gravity g,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · µ

(
∇u+ (∇u)T

)
−∇p+ ρg, (III.1)

∇ · u = 0, (III.2)
∂ρ

∂t
+ u · ∇ρ = 0. (III.3)

Ocellaris is currently designed to study air/water free-surface flows at high
Reynolds numbers, and does not include a turbulence closure model or the
effect of surface tension. The error made by neglecting these effects is small
for the included benchmark tests (Kleefsman et al. 2005; Paulsen et al. 2014).
The program design is made to be easily extendable and there should be no
fundamental problem with including such effects at a later time. For the first

109

III. High-density-ratio two-phase flow simulations in 3D

public release, the sole focus of the Ocellaris project has been to show that using
higher-order DG methods for free-surface flows is feasible and can be made stable
in regard to convective instabilities without compromising mass conservation.

A VOF colour function approach is used for density transport and free-surface
capturing (Hirt and Nichols 1981),

ρ = αρwater + (1− α) ρair, (III.4)

where α ∈ [0, 1] is the colour/indicator function which is used as the unknown
instead of the fluid density. The kinematic viscosity, ν = µ/ρ is computed
similarly,

ν = ανwater + (1− α) νair. (III.5)

III.3 Discontinuous Galerkin discretisation

The numerical method is an extension of Landet, Mardal, and Mortensen
(2020) which builds on Cockburn, Kanschat, and Schötzau (2005) and uses
the symmetric interior-penalty (SIP) method for the viscous term (Arnold 1982).
This is similar to what is done by Shahbazi, Fischer, and Ethier (2007) and
Cockburn, Kanschat, and Schötzau (2007). The domain is discretised as an
irregular mesh comprised of tetrahedral cells. Let T be the set of all cells and S
the set of all facets in the mesh. Polynomial function spaces of degree k on each
cell K are denoted Pk(K). These have no continuity at cell boundaries and no
inherent boundary conditions.

We use calligraphic typeface to denote operators and sets, bold italic for
vectors functions and italic for scalar functions. For nabla the conventions
(∇u)ij = ∂jui and (∇ · σ)i = ∂jσij are used. For time derivatives u = un+1 is
the unknown trial function and un and un−1 are the known values at the previous
two time steps. A second-order backwards-differencing formulation, BDF2, is
used for time integration. The parameters are {γ1, γ2, γ3} = {3/2,−2, 1/2}, see
the first integral in equation (III.14). The convecting velocity w is considered
known—which linearises the momentum equation—and w is Hdiv-conforming
such that the flux is continuous, Jw Kn = 0, see section III.4 for details.

The governing equations, (III.1) to (III.3), are cast into the following form:
find u ∈ [P2(K)]3, p ∈ P1(K), and α ∈ P0(K) such that

A(u,v;w) + B(p,v) = D(v) ∀ v ∈ [P2(K)]3, (III.6)
C(u, q) = E(q) ∀ q ∈ P1(K), (III.7)

F(α, β;w) = G(β) ∀ β ∈ P0(K), (III.8)

in the tessellated domain T subject to

u = uD on Dirichlet boundary facets, SD ⊂ S (III.9)
∂u

∂n
= a on Neumann boundary facets, SN ⊂ S (III.10)

110

Discontinuous Galerkin discretisation

The discontinuous Galerkin (DG) method works by breaking integrals over
the whole domain into a sum of integrals over each mesh cell K ∈ T , and defining
fluxes of the unknown functions between these cells. The average and jump
operators across an internal facet between two cells K+ and K− are defined as

{{u}} = 1
2(u+ + u−), (III.11)

Ju K = u+ − u−, (III.12)
Ju Kn = u+ · n+ + u− · n−. (III.13)

where u+ is the value of u along the internal facet when computed using the
shape functions and degrees of freedom related to the K+ cell and vice versa
for u−. For the exterior facets, which only have one connected cell due to being
located on the domain boundary, let the connected cell be denoted K+ such
that n+· Ju K = n+·u+ = n ·u. Take {{u}} = u and otherwise let all K− values
related to the non existing element outside the domain be zero.

III.3.1 Momentum equation

The momentum equation (III.1) is discretised using the SIP method for the
elliptic term (Arnold 1982) and otherwise using the fluxes from Cockburn,
Kanschat, and Schötzau (2005). The application of boundary conditions and
the choice of the penalty parameter κµ is described in detail in Landet, Mardal,
and Mortensen (2020). The flux of pressure is p̂ = {{p}} and the convective
flux ûw is a pure upwind flux. After multiplication with v and integration over
T , followed by integration by parts and application of the SIP method to the
viscosity, A can be found as the bilinear part containing u = un+1, B as the
bilinear part containing p, and D as the linear part of

∫
T

ρ

∆t (γ1u+ γ2u
n + γ3u

n−1)v dx (III.14)

−
∫
T
u · ∇ · (ρv ⊗w) dx +

∫
S
w · n+ ûw · J ρv K ds

+
∫
T
µ
(
∇u+ (∇u)T

)
: ∇v dx +

∫
SI
κµ Ju K · Jv K ds

−
∫
S

(
{{
µ
(
∇u+ (∇u)T

)}}
· n+) · Jv K ds

−
∫
SI

(
{{
µ
(
∇v + (∇v)T

)}}
· n+) · Ju K ds

−
∫
T
p∇ · v dx +

∫
S
p̂n+ · Jv K ds =

∫
T
ρ g dx.

On Dirichlet boundaries ûw is the upwind value. Depending on flow direction
this is either u or uD. On Neumann boundaries let ûw = u. The boundary

111

III. High-density-ratio two-phase flow simulations in 3D

conditions (BCs) can be set separately for each velocity component, allowing
slip, u · n = 0, or non-slip, u = 0, BCs. On all boundaries take p̂ = p.

III.3.2 Continuity equation

The equation used to ensure a divergence-free velocity field (III.2) is multiplied
by q and integrated over T . The flux is ûp = {{u}}. After integration by parts
C(u, q) and E(q) can be found from∫

S
ûp · n+ J q K ds −

∫
T
u · ∇q dx = 0. (III.15)

The non-zero E(q) results from using the boundary conditions in the flux,
ûp = uD on Dirichlet boundaries. On Neumann boundaries the unknown
function is used directly, ûp = u, but when assembling the contribution from
each velocity component separately it is beneficial to set ûp = 0 on free-slip
surfaces also for components with Neumann BCs. Otherwise, it is possible to
get u · n 6= 0 due to small errors in the generated meshes when the boundaries
are not perfectly approximated by simplices.

III.3.3 Density transport

The HRIC method (Muzaferija et al. 1998) is used to define the colour function
flux α̂. The HRIC flux limiter is stable and avoids the excessive interface
diffusion of a standard upwind flux. It would be ideal to construct a better
interface capturing method that can take advantage of the fact that the velocity
is in [P2(K)]3, but in this first public release of Ocellaris a standard algebraic
VOF method is used to validate the stability and applicability of the overall
free-surface flow solver.

To construct the DG operators for the density transport equation (III.8),
the strong form in equation (III.3) is multiplied by the test function β, and the
result is integrated over the domain. After integration by parts and discarding
derivatives of the piecewise constant functions, F can be found as the bilinear
part and G as the linear part of∫
T

1
∆t (γ1α

n+1 + γ2α
n + γ3α

n−1)β dx+
∫
S
α̂n+1w · n+ Jα K ds = 0, (III.16)

III.3.4 Velocity slope limiter

Using functions spaces that are higher order than piecewise constants to approx-
imate the velocity will cause Gibbs oscillation instabilities when the density field
has jumps, such as the order 1000 jump in density in free-surface simulations
of air and water. Slope-limiting techniques can be used to remove such insta-
bilities. The velocity slope-limiting approach taken here is the component-wise
hierarchical Taylor-polynomial based slope limiter described in Landet, Mardal,
and Mortensen (2020), where each velocity component of the convected velocity,

112

Solution algorithm

u, is slope limited by a vertex-based scalar slope limiter (Kuzmin 2010) while
the convecting velocity, w, is left unchanged. This approach requires no tuning
and the time spent in the velocity slope limiter is only around 0.2 % of the total
running time.

The effect of using a slope limiter is dramatic. Figure III.1 shows the
evolution of the total, potential and kinetic energy in the 3D dam-breaking test
case presented more thoroughly in section III.7.1. Water rushes out of the broken
dam towards a small box-shaped object which is impacted after about 0.4 s. As
can be seen, the slope-limited simulation preserves total energy well, trading
potential for kinetic energy up to the time of impact. After the impact the
conservation of energy is not perfect,but the kinetic energy is always controlled
and does not blow up. The second plot shows that the kinetic energy quickly
blows up when using the same simulation setup with the velocity slope limiter
deactivated. The simulation is automatically stopped after less than 50 time
steps when the Courant number passes 1000.

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

1200

1400

1600

1800

En
er

gy
 [J

]

Potential energy
Kinetic Energy

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time [s]

103

104

105

106

107

En
er

gy
 [J

]

Potential energy
Kinetic Energy

Figure III.1: The evolution of the kinetic, potential and total energy. 3D dam
breaking, fine mesh, with (left) and without (right) velocity slope limiting. Notice
the difference in time scales between the figures.

III.4 Solution algorithm

The time-stepping procedure is shown in algorithm 1. To decouple the density
field solver from the Navier–Stokes solver, and to linearise the momentum
equation, a second-order extrapolation w∗ is used to estimate the convective
velocity w,

w∗ = w∗, n+1 = 2wn −wn−1, (III.17)

which means ρn+1 can be computed before the velocity at time t = (n+ 1)∆t.
The discretised matrix version of equations (III.6) and (III.7),[

A B
C 0

] [
u
p

]
=
[
d
e

]
, (III.18)

113

III. High-density-ratio two-phase flow simulations in 3D

Algorithm 1: The Ocellaris IPCS-A time stepping procedure.
while tn+1 < tmax do

Solve for ρn+1 using w∗ (estimate of wn+1);
while not converged do

Solve momentum equation for u∗;
Solve pressure correction equation for pn+1;
Update the velocity u∗∗ using u∗ and pn+1;

Compute un+1 by projecting u∗∗ into BDM;
Copy un+1 into wn+1;
Slope limit un+1 ;
Increment n;

is a saddle-point problem, which is solved by the incremental pressure-correction
scheme on algebraic form (IPCS-A). This is an incremental version of the classic
Chorin-Temam methods (Chorin 1968; Temam 1969). A, B and C are sparse
matrix versions of the A, B and C operators, discretised using the discontinuous
Galerkin method described in section III.3. The unknowns u and p are now
vectors of degrees of freedom, u and p.

The first IPCS-A step is momentum prediction, performed by using an
approximate pressure field p∗ inserted into the first row of equation (III.18),

Au∗ = d−Bp∗. (III.19)

A splitting error is now introduced. First let A = M + R where M is
a scaled mass matrix resulting from assembly of the time derivative and R
contains the convective and diffusive operators. Then make the assumption that
R(u − u∗) ≈ 0 and use this when subtracting equation (III.19) from the first
row of equation (III.18),

M(u− u∗) = −B(p− p∗). (III.20)

The matrix M is block diagonal, and is hence cheap to invert. Use this property
and the divergence-free criterion, Cu = e, to remove the unknown u from
equation (III.20), and reorganise this into an equation for p,

CM−1Bp = CM−1Bp∗ − e + Cu∗. (III.21)

The velocity u can be recovered without solving a linear system, simply by
substituting the pressure p from the solution of equation (III.21) into equa-
tion (III.20),

u = −M−1B(p− p∗). (III.22)

The momentum-prediction equation (III.19) is solved first, followed by the
pressure-correction, equation (III.21) and the velocity update equation (III.22)
iteratively until the required accuracy is reached. The resulting velocity field is

114

Incoming waves and boundary reflections

projected into a BDM-type function space (Brezzi et al. 1987) where it becomes
exactly divergence free—the velocity flux is continuous across internal facets and
the velocity field is pointwise divergence free inside each cell, see Landet and
Mortensen (2019) for details. The result from this projection is stored both as
un+1 and wn+1. The last step is slope limiting un+1 such that any instabilities
are prevented from growing through the time derivative.

Solving the coupled problem in equation (III.18) without some form of
pressure and velocity splitting requires a direct solver, and such solvers scale
badly in terms of parallel computing efficiency. The IPCS-A method can be
solved using standard iterative Krylov methods which scale much better. Exact
mass conservation, Cu − e = 0, is still ensured on the algebraic level in each
iteration,

Cu− e = Cu−Cu∗ + Cu∗ − e (III.23)
(III.20)= CM−1B(p− p∗) + Cu∗ − e
(III.21)= 0.

For the example simulations described in section III.7, the maximum cell wise
divergence error in the convecting velocity range from 10−5 to 10−3, while the
convected velocity (which is slope limited) has a maximum cell wise divergence
error ranging from 102 to 104. This is with 10−8 relative error and 10−10 absolute
error convergence criteria in the pressure-correction Krylov solver. The result is
that the simulation in section III.7.1, a dam breaking in a closed box, has less
than 3× 10−5 % change in total mass from time step 3 to the final time step
(3415 steps, two seconds simulated time).

III.5 Incoming waves and boundary reflections

In our second numerical example, shown in detail in section III.7.2, we will
study a surface-piercing vertical cylinder in an infinite wave field. A truncated
computational domain is inevitably required to compute the solution in a finite
amount of time. Many methods have been suggested to dampen reflected waves
from the artificial computational boundaries, and to quantify the effect of various
damping methods, starting with the analytical studies of wave damping by
permeable structures in Miche (1944) and Straub, Bowers, and Herbich (1957)
and the first papers on similar sponge layers in numerical codes (Israeli and
Orszag 1981; Larsen and Dancy 1983). Since then, a wealth of methods have
appeared.

We have used a forcing-zone approach to wave damping, following the method
described in Perić and Abdel-Maksoud (2016) and Perić and Abdel-Maksoud
(2018). The only novel aspect is the implementation of the method in a finite
element setting, which is straight forward based on the equations presented in
the cited papers. We impose Dirichlet boundary conditions on the velocity and
density fields at both inlet and outlet boundaries. These boundaries are then
padded by forcing zones inside the domain which penalise deviations from the

115

III. High-density-ratio two-phase flow simulations in 3D

undisturbed wave field. This damps out any free-surface disturbances caused
by the structure without having to damp out the incident wave field itself. See
Perić and Abdel-Maksoud (2018) for estimates of the minimum forcing zone size
and the penalty magnitude needed to obtain a given reduction in reflected wave
amplitudes.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z [
m

]
an

d

fz
 [-

]

Inlet
Outlet

Figure III.2: Forcing zones in the “Cylinder in regular waves” test case.

Figure III.2 shows the forcing zones used in the test case described in
section III.7.2. The inlet zone is 0.75 m long and the outlet zone is 1.0 m long.
The shape of the zone is a quadratic polynomial with maximum value 1.0 at
the boundary and zero first-derivative towards the inner domain. To force
the solution towards the incident wave field, a penalty term is added to the
momentum equations, ∫

T
κfz βfz(u− uD) · v dx, (III.24)

where κfz is the penalty parameter, in our calculations 10, βfz is the zone shape
shown in figure III.2 and uD(x, z, t) is the incident-wave velocity field used for
initial and boundary conditions. The same forcing-zone approach is added to the
density-transport equation for the colour function with the same forcing-zone
shapes and the same penalty parameter, κfz = 10.

The initial and boundary conditions for the velocity and density fields are
computed from Fenton stream function wave theory. This is a high-order regular
wave theory based on approximating a stream function by a truncated Fourier
series. This method of constructing non-linear regular waves was pioneered by
Dean (1965). Our implementation is based on Rienecker and Fenton (1981),
which is often referred to as “Fenton” stream function wave theory to differentiate
it from the original “Dean” stream function wave theory.

The Fenton method is based on collocation in N +1 points on the free surface
along half the wave length, λ. The Fenton stream function,

Ψw(x, z, t) = B0z +
N∑
j=1

Bj
sinh jkz
cosh jkD cos jkx, (III.25)

116

Incoming waves and boundary reflections

is non-linear in the wave height η since z = η in the collocation points. Ψw

does a-priori satisfy the bottom boundary condition at z = 0 and also the
Laplace equation ∇2Ψw = 0. The following conditions are imposed in the
Newton–Raphson iterations that are applied to compute the unknown coefficients
in equation (III.25): (i) the free surface is a stream line, Ψw = const., (ii) the
pressure is constant at the free surface, (iii) the wave height is H, such that
η(0) − η(λ/2) = H, (iv) the mean wave elevation is D, such that

∫ λ/2
0 η dx =

Dλ/2. See Rienecker and Fenton 1981 for details.
We use the same approach to find a compatible stream function for the

air phase, Ψa, when Ψw has been determined. The stream function in equa-
tion (III.25) is now linear in the unknowns since η is known, so the expansion
coefficients can be found by a single linear solve. This gives two separate domains
where the boundary conditions are satisfied and the divergence is zero, but the
velocity parallel to the free surface has a discontinuity at the free surface since
the method is based on potential theory and does not contain the viscosity that
causes a velocity shear at the free surface. To approximate this, a blended stream
function is constructed,

Ψ = [1− f(Z)]Ψw(x, z) + f(Z)Ψa(x, z), (III.26)

Z = z − η(x)
d− η(x) ,

where the blending function f(Z) is zero in the water and unity in the air above
the blending zone. All blending is performed in the air phase, and the blending
zone has height d, starting from the free surface. A fifth-order polynomial smooth
step function is used for f(Z). This function has zero first and second derivatives
at the top and bottom of the blending zone. The resulting velocity field,

ux = (1− f)∂Ψw

∂z
+ f

∂Ψa

∂z
− df

dz
Ψw(x, z) + df

dz
Ψa(x, z), (III.27)

uz = −(1− f)∂Ψw

∂x
− f ∂Ψa

∂x
+ df

dx
Ψw(x, z)− df

dx
Ψa(x, z),

is continuous and satisfies the continuity equation everywhere, the dynamic and
kinematic free-surface boundary conditions at the interface, and the free-slip
boundary conditions at the top and bottom of the domain. These properties
make the blended solution a good choice to use as initial and boundary conditions
in an exactly divergence-free Navier–Stokes solver.

It should be noted that the blending zone height and shape are ad hoc,
though if the (mean) shape of the boundary layer was known it would most
likely be possible to approximate it by the above method. We believe the error
made in the initial and boundary conditions by this method are much smaller
than the more traditional method of applying the wave velocity field in the water
phase and setting the velocity in the air to zero, or at most a constant value. By
having a continuous stream-function description of the whole field, the initial
and boundary conditions are smooth and exactly divergence free pointwise and
globally. Enforcing a non-zero-divergence velocity field by Dirichlet boundary

117

III. High-density-ratio two-phase flow simulations in 3D

conditions on all boundaries would be incompatible with the incompressibility
criterion and make the global system unsolvable. The presented method can
be (and is) used with Dirichlet conditions on all normal components without
problems.

III.6 Implementation

The Ocellaris solver (Landet 2019c) is built on FEniCS (Logg, Mardal, and
Wells 2012) and PETSc (Balay, Abhyankar, et al. 2018; Balay, Gropp, et al.
1997; Dalcin et al. 2011; Davis 2004; LLNL n.d.). The overwhelming majority
of the code, including the definition of the weak form and the time-stepping
procedure, is implemented in Python 3. The FEniCS form compiler, FFC, is
used to compile the weak form, defined in UFL Python format, to optimised
C++ code (Alnæs et al. 2014; R. C. Kirby and Logg 2006; Ølgaard, Logg, and
Wells 2008). Wherever tight loops over the mesh cells or facets are needed in
other parts of the program, the loop is written in C++. For the simulation
examples shown in section III.7, the additional C++ code is restricted to parts
of the VOF implementation and the velocity slope limiter.

Ocellaris is developed using automated unit and MMS (method of manufac-
tured solutions) testing. Unfortunately, MMS testing of two-phase flows with
discontinuous density fields is not well-developed, so testing of this functionality
involves running full time simulations, which is not done automatically on each
change of the code as this would be too expensive. The Ocellaris program
design is made up of independent pluggable components, letting the user define
which combination of pressure-splitting scheme, free-surface model, slope limiter
and more to use, simply by referencing the relevant components in the input
file. This also means that there are automated MMS test of the implemented
pressure-correction solvers, but they are tested with a single-phase flow model
where classical analytical solutions are available, such as the Taylor–Green vortex
(Green and Taylor 1937).

III.6.1 Example input file

The following file listings show excerpts from the input file used to simulate
regular waves passing a vertical, surface-piercing cylinder. More information
about this example can be found in section III.7.2. Complete documentation of
the input file format can be found in (Landet 2019b), and the full input file can
be found in (Landet 2019a). All Ocellaris input files are written on YAML format
and start with a mandatory header section followed by an optional metadata
section. An example of these two input file sections is shown in listing III.1.
ocellaris:
type: input
version: 1.0

metadata:
author: Tormod Landet
date: 2018-12-06

118

Implementation

description: |
Surface piercing cylinder with regular waves

Listing III.1: Input file header and metadata.

Ocellaris supports defining constants to be used throughout the input file.
Defining these once on top of the file makes parameter studies and input changes
easier to perform and makes the file easier to read. The definition of convenience
constants and physical constants can be seen in listing III.2.
user_code:

constants:
H: 1.20 # Domain depth
R: 0.03 # Cylinder radius
L: 4.00 # Domain length
B: 0.50 # Domain breadth
C: 1.50 # Dist. from cylinder (origin) to inlet
d: 0.60 # Water depth
w: 0.75 # Length of the forcing zone
wplus: 0.15 # Additional forcing zone at outlet

physical_properties:
rho0: 1000.0
nu0: 1.0e-6
rho1: 1.0
nu1: 1.5e-5
g: [0, 0, -9.81]

Listing III.2: Input file constants and physical constants.

The mesh section is shown in listing III.3. The mesh file, created in gmsh
(Geuzaine and Remacle 2009), is loaded using the meshio Python package which
implements readers and writers for many unstructured mesh file formats.
mesh:

type: meshio
mesh_file: ../meshA/cylinder.msh
meshio_type: gmsh

Listing III.3: Input file mesh definition.

Known field functions are defined in listings III.4 and III.5. Known fields are
used in Ocellaris to define initial and boundary conditions and also to define
the location of the free-surface wave damping zones described in section III.5.
The waves are defined using the raschii Python package which produces C++
code for the Fenton and Stokes regular wave models for use in FEniCS-based
solvers. Note also that Ocellaris accepts Python expressions such as "py$ H -
d" instead of scalars, booleans and strings. These expressions can be used to
define parameters in terms of the user-defined constants.
fields:
- name: waves

type: RaschiiWaves
wave_model: Fenton
air_model: FentonAir
model_order: 10
still_water_position: py$ d

119

III. High-density-ratio two-phase flow simulations in 3D

depth: py$ d
depth_above: py$ H - d
blending_height: 0.3
wave_height: 0.11187
wave_length: 1.20444

Listing III.4: Input file definition of the incoming wave field.

The damping zone in listing III.5 is implemented as a generic scalar field.
The C++ code is compiled inside a namespace that includes all user-specified
constants and an array, x, defining the coordinates where the field is to be
evaluated. Using C++ lambdas allows using multi-line expressions to compute
the field value. Standard C++ expressions, such as "x[0] + x[1]*x[2]"
(x+ yz), can also be given for fields which do not need multiple statements to
compute the field value. The inlet damping zone is defined equivalently to the
outlet damping zone, but is not shown here for brevity.
- name: outlet zone

type: ScalarField
variable_name: beta
stationary: yes
cpp_code: |

[&]() {
double dz0 = (L - (w + wplus)) - C;
double dz1 = (L - 0) - C;
if (x[0] < dz0) {

return 0.0;
} else if (x[0] > dz1) {

return 1.0;
} else {

return pow((x[0] - dz0)/(dz1 - dz0), 2);
}

}()

Listing III.5: Input file definition of the outlet damping zone location.

A definition of a forcing zone is shown in listing III.6. There are four such
zones in the simulation, damping the momentum and density fields at the inlet
and outlet, see section III.5. The zone in the example shows the damping
of the momentum equations at the outlet boundary. It uses the previously
defined known fields waves and outlet zone to specify the target value and
field location.
forcing_zones:
- name: outlet velocity damping

type: MomentumForcing
zone: outlet zone/beta
target: waves/u
penalty: 10
plot: no

Listing III.6: Input file definition of a momentum damping zone.

The initial conditions are defined in listing III.7. The naming scheme uses
the postfix p to specify the value of a field at t = 0, the previous time-step value,
and 0 and 2 to specify the x and z directions respectively. To use higher-order

120

Implementation

time stepping from the start, the values at t = −∆t can be specified by using
the pp prefix, but that is normally only done in convergence tests where the
analytical solution is known.
initial_conditions:

cp: # c is the VOF colour function
function: waves/c

up0:
function: waves/uhoriz

up2:
function: waves/uvert

Listing III.7: Input file definition of initial conditions.

Listing III.8 shows the definition of boundary conditions for the inlet. The
inside code is used to select the facets on the inlet. If a boundary region is
marked with an integer identifier in the mesh generator, then facet selection
can be based on this identifier instead. For the cylinder-in-waves example the
boundary facets are all marked with C++ code as shown in listing III.8. The
on_boundary boolean flag is true for external facing facets.
boundary_conditions:
- name: Inlet

selector: code
inside_code: "on_boundary and x[0] < 0 - C + 1e-5"
u0:

type: FieldFunction
function: waves/uhoriz

u1:
type: ConstantValue
value: 0

u2:
type: FieldFunction
function: waves/uvert

c:
type: FieldFunction
function: waves/c

Listing III.8: Input file definition of boundary conditions.

The Navier–Stokes solver section specifies which velocity–pressure splitting
scheme to use, the iteration tolerances and the PETSc Krylov solver parameters.
Any PETSc configuration variable can be changed for maximum flexibility. In the
example shown in listing III.9, the Ocellaris default options for the momentum
and pressure PETSc solvers are used and only the convergence criteria and the
number of inner iterations (the number of pressure corrections per time step) are
changed. After ten time steps, only two pressure corrections are performed per
time step. The Krylov solver tolerances are given as three numbers; the tolerance
for the first three pressure corrections, the value for the mid range of pressure
corrections, and finally the values for the last five pressure corrections. Since,
after the first ten time steps, there are only two pressure corrections per time
step, only the last value in the lists matter. This gradual decrease of tolerances
is done to avoid spending a lot of time in the Krylov solver in the beginning

121

III. High-density-ratio two-phase flow simulations in 3D

of the simulation when the pressure corrections are not converged and exact
answers are not needed.
solver:
type: IPCS-A
num_inner_iter: py$ 10 if it < 3 else (5 if it < 10 else 2)
allowable_error_inner: 1.0e-4
use_stress_divergence_form: yes
u:

inner_iter_control: [3, 5]
inner_iter_rtol: [1.0e-2, 1.0e-4, 1.0e-6]
inner_iter_atol: [1.0e-2, 1.0e-4, 1.0e-6]
inner_iter_max_it: [50, 200, 9999]

p:
inner_iter_control: [3, 5]
inner_iter_rtol: [1.0e-4, 1.0e-6, 1.0e-8]
inner_iter_atol: [1.0e-6, 1.0e-8, 1.0e-10]
inner_iter_max_it: [50, 200, 9999]

Listing III.9: Input file configuration of the solver.

The multiphase VOF input sections are shown in listing III.10. The HRIC
VOF scheme is selected and 5 sub-cycles—the number of advection steps of the
VOF colour function per time step of the Navier–Stokes solver—are applied to
maximise sharpness of the interface by lowering the effective Courant number in
the VOF solver.
multiphase_solver:

type: BlendedAlgebraicVOF
num_subcycles: 5

convection:
c:

convection_scheme: HRIC

Listing III.10: Input file configuration of the multi-phase solver.

The final excerpt from the input file is shown in listing III.11. Here the
velocity slope limiter is configured to use the scalar HierarchicalTaylor slope-
limiting method by Kuzmin (2010) for each component of the convected velocity
field.
slope_limiter:
u:

method: Componentwise
comp_method: HierarchicalTaylor

Listing III.11: Input file slope-limiter configuration.

III.7 Numerical examples

The following example simulations have been run in Ocellaris. Source code
and input files, which can be used to reproduce all the results, can be found
in (Landet 2019a). Visualisations and isosurfaces have been made in Paraview
(Ahrens, Geveci, and Law 2005). The meshes, all available for download, have
been generated and optimised in Gmsh (Geuzaine and Remacle 2009).

122

Numerical examples

III.7.1 3D dam breaking

Kleefsman et al. (2005) presents experimental and numerical results for a 3D dam-
breaking test case where a small container is subjected to a fast-moving front of
water that splashes over and around the container. The tank is 3 m× 1 m× 1 m
and the container is 16 cm× 40 cm× 16 cm. There are three surface-height
probes that are initially dry and one that is in the fluid (H4). The container is
fitted with eight pressure gauges close to the centre line. The locations of the
gauges can be found in Issa and Violeau (2006) along with an exact description
of the tank and container geometries.

H1 H2 H3 H4

P1

P5P8

Figure III.3: 3D dam breaking. Sketch of the initial conditions along with the
location of the surface-height probes H1–H4 and pressure gauges P1–P8.

The Ocellaris simulations have been run based on irregular tetrahedral meshes.
The same mesh input has been used with three different mesh densities, resulting
in a coarse mesh with a total of 18 676 tetrahedra, a medium-density mesh with
40 450 tetrahedra and a fine mesh with 123 628 tetrahedra. A cross-sectional
view of the medium-density mesh can be seen in figure III.4. The time step is
adaptively controlled based on the maximum cell-based (III.28) and facet-based
(III.29) Courant numbers. The time step is halved if one of the two is above 0.3
and doubled if they are both below 0.05. The Courant numbers are computed
for each cell and facet as

Co = |u|∆t
Dc

(cell average) (III.28)

Cof = u · nSf∆t
VcNsc

(facet average) (III.29)

where Dc is the cell diameter, Sf is the facet area, and Vc is the cell volume.
The facet-based Courant number is used in the HRIC transport scheme for the
colour function and this is sub-cycled with Nsc sub-cycles per time step. We have
used Nsc = 5 which makes the cell- and facet-based Courant numbers similar in
magnitude.

Figure III.5 shows the evolution of the four free-surface probes for the medium
and fine mesh. The fine mesh fits best with the experiments, but both mesh
resolutions show good comparison for probes H2–H4. The H1 probe, where
the free-surface height is multi valued, does not compare well. It is not clear
exactly what heigh is measured in the experiments at this location, we have

123

III. High-density-ratio two-phase flow simulations in 3D

Figure III.4: Longitudinal cut through the centre of the medium-density mesh.
The mesh does not conform to the cut plane, making some elements look skewed.

reported the topmost surface intersection. A visualisation of the colour function
at t = 0.4075 s, when pressure probe P2 spikes in the experimental results, is
shown in figure III.6. The colour function isosurface from t = 1.1075 s, when the
free surface is multi-valued behind the container, can be seen in figure III.7.

The pressure probe time series are shown in figure III.8. The pressure probes
on top of the container, P5–P8, all show very similar behaviour, we have included
the results for probe P7 as an example, the other plots would have been roughly
identical. On the side of the container facing the wave, the mesh convergence
can be seen clearly in the P1 and P2 probes. Further up the container wall,
the pressure peak is less pronounced in the numerical results. This is possibly
due to the interface being smeared over more cells than optimal, creating a
more gradual rise in density at the pressure sensors than what happened in the
experiment.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

Su
rfa

ce
 h

ei
gh

t [
m

]

H1
H2
H3
H4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

Su
rfa

ce
 h

ei
gh

t [
m

]

H1
H2
H3
H4

Figure III.5: Free-surface probes. Medium mesh (left) and fine mesh (right).
Experimental data shown with dashed lines.

III.7.2 Cylinder in regular waves

Grue and Huseby (2002) gives experimental results for the inline force on a
cylinder in regular waves. Figure 3d in that reference is used by Paulsen et

124

Numerical examples

Figure III.6: Fine mesh, t = 0.4075 s.
Centered slice with closeup of the
colour function near the container.

Figure III.7: Fine mesh, t = 1.1075 s.
α = 0.5 isosurface from Paraview.

al. (2014) as a benchmark problem, and in this numerical example we will do
the same. Fenton stream-function waves are applied in a numerical wave tank
which is 4 m long and 0.5 m wide. Our numerical domain height is 1.2 m meter
with free-slip BCs at the top. The still-water depth is h = 0.6 m, the wave
heigh is H = 0.112 m and the wave length is λ = 1.204 m, leading to a wave
number of k = 5.216 m−1, a wave period of T = 0.843 s and a phase speed of
c = 1.429 m s−1. The situation is shown in figure III.2 with a surface-piercing
vertical cylinder of radius R = 3 cm. Nondimensional parameters are kR = 0.16,
kh = 0.16 and kH = 0.58. The order of the Fenton stream function wave in
equation (III.25) is N = 10.

The mesh is shown in figure III.9. The mesh cells in the wave propagation zone
have characteristic lengths of about 2.5 cm, giving approximately 4.5 elements
per wave height. To test wave propagation through the domain a similar mesh
is used with the same refinement around the cylinder location, but without
the cylinder being present. Symmetry boundary conditions are applied to the
centre longitudinal plane shown prominently in figure III.9. The inlet and outlet
boundary conditions with associated forcing zones are implemented as described
in section III.5. The longitudinal wall away from the cylinder is modelled as
free-slip boundary, the same is true for the top and bottom surfaces of the tank.

The cylinder, when it is included, is non-slip in the horizontal plane, but the
vertical velocity component is allowed to slip to avoid the free surface sticking
to the cylinder. This approximation is done since our mesh resolution is not fine
enough to model the true wetting dynamic with appropriate slip lengths. For an
introduction to the physics of the contact-line where the free surface intersects
the cylinder wall, and how this can be translated into boundary conditions, see
e.g. Qian, Wang, and Sheng (2006) and Ren and E (2007). It should be noted
that Paulsen et al. (2014) used free-slip boundary conditions in all directions on
the cylinder. They were able to get results comparable to the model tests, so the
viscous boundary layer does strongly influence the quantities we are comparing.

The difference between the target wave elevation from the Fenton stream

125

III. High-density-ratio two-phase flow simulations in 3D

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0

2

4

6

8

10
Pr

es
su

re
 [k

Pa
]

Fine P1
Medium P1
Coarse P1
Experiments

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0

2

4

6

8

10

Pr
es

su
re

 [k
Pa

]

Fine P2
Medium P2
Coarse P2
Experiments

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0

2

4

6

8

10

Pr
es

su
re

 [k
Pa

]

Fine P3
Medium P3
Coarse P3
Experiments

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0

2

4

6

8

10

Pr
es

su
re

 [k
Pa

]

Fine P7
Medium P7
Coarse P7
Experiments

Figure III.8: 3D dam breaking, pressure probe results for all three meshes
compared to the time series from the experiments.

Figure III.9: Mesh used for the cylinder-in-waves test case, only half the domain
is included, symmetry is applied on the center face.

function and the VOF free surface is computed based on the intersection of
the α = 0.5 isosurface and a centred longitudinal plane through the numerical
domain without the cylinder. The region from 2/3λ in front of the cylinder
position to 1/3λ behind the cylinder position is used to compute the difference
between the phase of the numerical free surface and the stream function’s free
surface. The diffusive error is computed in the same region as 1

H

√
〈η′2〉 where

η′ is the difference between the VOF and the stream-function wave elevation
after correcting for the phase error and 〈·〉 denotes the mean over about 300

126

Numerical examples

points where η′ is sampled. Figure III.10 shows the results compared to Paulsen
et al. (2014, figures 2 and 3), but note that our results are from a 3D domain
with forcing zones as described in section III.5, while their results are from 2D
simulations in a periodic domain which will let errors develop more easily over
time.

0 2 4 6 8 10
t / T [-]

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

Ph
as

e
er

ro
r [

ra
d]

p.p.w.h. = 5
p.p.w.h. = 10
p.p.w.h. = 15
Ours

0 2 4 6 8 10
t / T [-]

10 2

10 1

Di
ffu

siv
e

er
ro

r [
-]

p.p.w.h. = 5
p.p.w.h. = 10
p.p.w.h. = 15
Ours

Figure III.10: Phase error (left) and diffusive error (right). Results from Paulsen
et al. (2014) where p.p.w.h. means mesh points per wave heigh. Our results
have about 4.5 cells per wave height. T is the wave period.

1 2 3 4 5 6
Time [s]

0.04

0.02

0.00

0.02

0.04

0.06

0.08

 [m
]

Experiment
Fenton
Ours

Figure III.11: Surface elevation at the cylinder location, comparing laboratory
experiment by Grue and Huseby (2002) to a Fenton stream-function wave and
our numerical results. The α = 0.5 isosurface is shown along with a shaded area
showing α ∈ [0.35, 0.65].

Our numerical results are compared to the experimental results by Grue and
Huseby (2002) in figures III.11 and III.12. The time series from figures 3c and
3d in their work have been shifted in time by −15.63 s to align the wave phases.
Figure III.11 shows the wave elevation and also includes the Fenton stream-
function solution to show the phase and diffusive errors in a more intuitive way.
This also confirms that the applied stream-function wave is similar to the wave
obtained in the laboratory wave flume. The inline force shown in figure III.12 is
computed as the total force on the cylinder in the longitudinal direction, positive
towards the outlet. Note the bumps in the force signal right before each trough,
the “secondary load cycle”. The associated free-surface ridge behind the cylinder
at this time is shown in figure III.13.

127

III. High-density-ratio two-phase flow simulations in 3D

1 2 3 4 5 6
Time [s]

3

2

1

0

1

2

3

4
Fo

rc
e

[N
]

Experiment
Ours

Figure III.12: Inline force on cylinder. Our numerical results compared to the
laboratory experiment by Grue and Huseby (2002).

Figure III.13: Snapshot of free surface slightly after a wave crest has passed
from left to right. Isosurface made by Paraview and visualised in Blender. The
domain was mirrored about the symmetry plane when making the visualisation.

III.8 Discussion

Both test cases presented in section III.7 show that the Ocellaris DG FEM solver
is able to simulate complex two-phase flows in 3D. The pressure probes in the
dam breaking test show good agreement with the experiments. Pressure probe
P1 matches very well and the convergence between the mesh resolutions is clear.
The impact pressures higher up on the vertical front wall of the container are less
peaked than the measurements. They are most likely softened by the diffusive
free surface, which can be seen in figure III.6. The surface height probes match
well, except for the probe behind the container where the flow is very complex
and the free surface is multi valued. For the second test case the final comparison
of the inline force on the cylinder shows an excellent match and the expected
free-surface ridge behind the cylinder is observed.

The comparatively primitive free-surface capturing method is the weak point
of the current implementation. Using a piecewise constant density field on

128

References

the same mesh as the piecewise quadratic convecting velocity means that a
lot of the data is thrown away when it comes to the advection of the free
surface. Quantities directly related to the jump in the density field will always be
limited to first-order convergence, but a more sophisticated free-surface capturing
method could provide a sharper profile, hopefully eliminating the softening of
the impact pressures in the first test case and removing much of the diffusive
error in the wave propagation test. The excellent match of the inline force in the
second test case should be treated with some scepticism considering the observed
lowering of the peak height of the incident wave. The diffusive interface may
have counteracted the expected lowering of the peak force by increasing the air
phase pressures through an artificially high fluid density near the free surface.

The reason we selected to use only 4.5 elements per wave height for the wave
propagation test is that the velocity function space has 30 unknowns per mesh
cell, so it is necessary to limit the number of cells more than in lower-order
methods. The simulation has about 120 000 cells and is run on 32 CPUs, so
significantly increasing the mesh density will come at a large cost. This highlights
the need for more research into free-surface capturing schemes that are designed
specifically for high-order methods.

The main advantage of the method is the potential for using fewer elements
away from the free surface due to the quadratic approximating polynomials. The
dependency on having a very high mesh resolution in the free-surface region must
be removed if the method is to be a preferable solution for general free-surface
simulations. Another approach would be to make the method h–p adaptive. A
relevant issue for further research, which we have not touched on here, is that
we observe that the number of iterations in the Krylov solver for the momentum
equation increases a lot when the density ratio increases. The momentum
equation can most likely be preconditioned or stabilised to stop this tendency.

We have shown that it is viable to use Ocellaris’ exactly divergence-free high-
order discontinuous Galerkin finite element method with velocity slope limiting
to simulate realistic air/water free-surface physics, but some work remains to be
fully competitive with established low-order methods.

Acknowledgements

The simulations were performed on resources provided by UNINETT Sigma2,
the national infrastructure for high performance computing and data storage in
Norway.

References

Ahrens, J., Geveci, B., and Law, C. (2005). “ParaView: An End-User Tool for
Large-Data Visualization”. In: Visualization Handbook. Ed. by Hansen, C. D.
and Johnson, C. R. Burlington: Butterworth-Heinemann, pp. 717–731.

129

III. High-density-ratio two-phase flow simulations in 3D

Alnæs, M. S. et al. (Mar. 2014). “Unified Form Language: A Domain-specific
Language for Weak Formulations of Partial Differential Equations”. ACM
Trans. Math. Softw. 40.2, 9:1–9:37.

Arnold, D. N. (1982). “An interior penalty finite element method with discontin-
uous elements”. SIAM journal on numerical analysis 19.4, pp. 742–760.

Babuška, I. and Dorr, M. R. (1981). “Error estimates for the combined h and p
versions of the finite element method”. Numerische Mathematik 37.2, pp. 257–
277.

Balay, S., Abhyankar, S., et al. (2018). PETSc Users Manual. Tech. rep. ANL-
95/11 - Revision 3.9. Argonne National Laboratory.

Balay, S., Gropp, W. D., et al. (1997). “Efficient Management of Parallelism in
Object Oriented Numerical Software Libraries”. In: Modern Software Tools in
Scientific Computing. Ed. by Arge, E., Bruaset, A. M., and Langtangen, H. P.
Birkhäuser Press, pp. 163–202.

Brezzi, F. et al. (1987). “Mixed finite elements for second order elliptic problems
in three variables”. Numerische Mathematik 51.2, pp. 237–250.

Chorin, A. J. (1968). “Numerical solution of the Navier-Stokes equations”.
Mathematics of computation 22.104, pp. 745–762.

Cockburn, B., Kanschat, G., and Schötzau, D. (2005). “A locally conservative
LDG method for the incompressible Navier-Stokes equations”. Mathematics
of Computation 74.251, pp. 1067–1096.

— (2007). “A Note on Discontinuous Galerkin Divergence-free Solutions of the
Navier–Stokes Equations”. Journal of Scientific Computing 31.1-2, pp. 61–73.

Dalcin, L. D. et al. (2011). “Parallel distributed computing using Python”.
Advances in Water Resources 34.9. New Computational Methods and Software
Tools, pp. 1124–1139.

Davis, T. A. (2004). “Algorithm 832: UMFPACK V4.3—An Unsymmetric-
Pattern Multifrontal Method”. ACM Transactions on Mathematical Software
(TOMS) 30.2, pp. 196–199.

Dean, R. G. (1965). “Stream function representation of nonlinear ocean waves”.
Journal of Geophysical Research 70.18, pp. 4561–4572.

Geuzaine, C. and Remacle, J.-F. (2009). “Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities”. International
Journal for Numerical Methods in Engineering 79.11, pp. 1309–1331.

Green, A. and Taylor, G. (1937). “Mechanism of the production of small eddies
from larger ones”. In: Proceedings of the royal society of London. Series A,
mathematical and physical sciences. Vol. 158, pp. 499–521.

Grue, J. and Huseby, M. (2002). “Higher-harmonic wave forces and ringing of
vertical cylinders”. Applied Ocean Research 24.4, pp. 203–214.

Harten, A. (1983). “High resolution schemes for hyperbolic conservation laws”.
Journal of Computational Physics 49.3, pp. 357–393.

Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid (VOF) method for
the dynamics of free boundaries”. Journal of Computational Physics 39.1,
pp. 201–225.

130

References

Huerta, A. et al. (2013). “Efficiency of high-order elements for continuous and dis-
continuous Galerkin methods”. International Journal for Numerical Methods
in Engineering 96.9, pp. 529–560.

Israeli, M. and Orszag, S. A. (1981). “Approximation of radiation boundary
conditions”. Journal of Computational Physics 41.1, pp. 115–135.

Issa, R. and Violeau, D. (2006). ERCOFTAC Test-case 2, 3D Dambreaking,
Release 1.1. SPH European Research Interest Community SIG, Electricite
De France, Laboratoire National Hydaulique et Environnement.

Kirby, R. C. and Logg, A. (Sept. 2006). “A compiler for variational forms”. ACM
Transactions on Mathematical Software 32.3, pp. 417–444.

Kirby, R. M., Sherwin, S. J., and Cockburn, B. (2012). “To CG or to HDG: A
Comparative Study”. Journal of Scientific Computing 51.1, pp. 183–212.

Kleefsman, K. M. T. et al. (2005). “A Volume-of-Fluid based simulation method
for wave impact problems”. Journal of Computational Physics 206.1, pp. 363–
393.

Krivodonova, L. et al. (2004). “Shock detection and limiting with discontinuous
Galerkin methods for hyperbolic conservation laws”. Applied Numerical Math-
ematics. Workshop on Innovative Time Integrators for PDEs 48.3, pp. 323–
338.

Kubatko, E. J. et al. (2009). “A Performance Comparison of Continuous and Dis-
continuous Finite Element Shallow Water Models”. Journal of Scientific
Computing 40.1, pp. 315–339.

Kuzmin, D. (Apr. 2010). “A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods”. Journal of Computational and Applied
Mathematics. Finite Element Methods in Engineering and Science (FEMTEC
2009) 233.12, pp. 3077–3085.

Landet, T. (Jan. 2019a). Ocellaris DG-FEM software and input files to reproduce
results. Zenodo: 10.5281/zenodo.2587038.

— (2019b). Ocellaris web page and user manual. www.ocellaris.org.
— (2019c). “Ocellaris: a DG FEM solver for free-surface flows”. The Journal of

Open Source Software 4.35, p. 1239.
Landet, T., Mardal, K.-A., and Mortensen, M. (2020). “Slope limiting the

velocity field in a discontinuous Galerkin divergence-free two-phase flow
solver”. Computers & Fluids 196, p. 104322.

Landet, T. and Mortensen, M. (2019). “On exactly incompressible DG FEM
pressure splitting schemes for the Navier-Stokes equation”. arXiv:1903.11943
[physics].

Larsen, J. and Dancy, H. (1983). “Open boundaries in short wave simulations —
A new approach”. Coastal Engineering 7.3, pp. 285–297.

LLNL (n.d.). hypre: High Performance Preconditioners. www.llnl.gov/CASC/hypre/.
Lawrence Livermore National Laboratory.

Logg, A., Mardal, K.-A., and Wells, G. (Feb. 2012). Automated Solution of
Differential Equations by the Finite Element Method: The FEniCS Book.
Springer Science & Business Media.

Miche, M. (1944). “Mouvements ondulatoires de la mer en profondeur constante
ou décroissante”. Annales de Ponts et Chaussées.

131

http://doi.org/10.5281/zenodo.2587038
https://www.ocellaris.org/
http://arxiv.org/abs/1903.11943
http://arxiv.org/abs/1903.11943
http://www.llnl.gov/CASC/hypre/

III. High-density-ratio two-phase flow simulations in 3D

Muzaferija, S. et al. (1998). “A Two-Fluid Navier-Stokes Solver to Simulate Water
Entry”. In: Proceedings from the 22nd symposium on naval hydrodynamics.
Washington, DC, pp. 277–289.

Ølgaard, K., Logg, A., and Wells, G. (Nov. 2008). “Automated Code Generation
for Discontinuous Galerkin Methods”. SIAM Journal on Scientific Computing
31.2, pp. 849–864.

Paulsen, B. T. et al. (2014). “Forcing of a bottom-mounted circular cylinder by
steep regular water waves at finite depth”. Journal of Fluid Mechanics 755,
pp. 1–34.

Perić, R. and Abdel-Maksoud, M. (Jan. 2016). “Reliable damping of free-surface
waves in numerical simulations”. Ship Technology Research 63.1, pp. 1–13.

Perić, R. and Abdel-Maksoud, M. (2018). “Analytical prediction of reflection
coefficients for wave absorbing layers in flow simulations of regular free-surface
waves”. Ocean Engineering 147, pp. 132–147.

Popinet, S. (2003). “Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries”. Journal of Computational Physics
190.2, pp. 572–600.

Qian, T., Wang, X.-P., and Sheng, P. (2006). “Molecular hydrodynamics of
the moving contact line in two-phase immiscible flows”. Communications in
Computational Physics 1.1, pp. 1–52.

Ren, W. and E, W. (2007). “Boundary conditions for the moving contact line
problem”. Physics of Fluids 19.2, p. 022101.

Rienecker, M. M. and Fenton, J. D. (1981). “A Fourier approximation method
for steady water waves”. Journal of Fluid Mechanics 104, pp. 119–137.

Shahbazi, K., Fischer, P. F., and Ethier, C. R. (2007). “A high-order discontinuous
Galerkin method for the unsteady incompressible Navier–Stokes equations”.
Journal of Computational Physics 222.1, pp. 391–407.

Straub, L. G., Bowers, C. E., and Herbich, J. B. (1957). “Laboratory tests of
permeable wave absorbers”. Coastal Engineering Proceedings 1.6, p. 44.

Temam, R. (1969). “Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires (II)”. Archive for rational
mechanics and analysis 33.5, pp. 377–385.

Ubbink, O. (1997). “Numerical prediction of two fluid systems with sharp
interfaces”. PhD thesis. Imperial College, University of London.

Weller, H. G. et al. (1998). “A tensorial approach to computational continuum
mechanics using object-oriented techniques”. Computers in Physics 12.6,
pp. 620–631.

132

IV

Paper IV

Ocellaris: a DG FEM solver for
free-surface flows

Tormod Landet
Published in Journal of Open Source Software, DOI: 10.21105/joss.01239

Free-surface flows are found wherever two immiscible fluids come into contact,
such as at the interface between water and air in the ocean. Simulations of
free-surface flows at high Reynolds numbers are important for the design of
coastal, bottom-fixed, and floating structures exposed to ocean waves, as well as
partially filled pipes and tanks. The large difference in density between water
and air poses problems for numerical approximation across the interface, and the
highly non-linear behaviour of the free surface, which can break and overturn,
makes separating computations into two different fluid domains difficult. As a
model for free-surface flows, Ocellaris solves the variable-density incompressible
Navier–Stokes equations with discontinuous density fields,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · µ

(
∇u+ (∇u)T

)
−∇p+ ρg,

∇ · u = 0,
∂ρ

∂t
+ u · ∇ρ = 0.

Low-order finite volume methods (FVM) are currently the most popular
methods for solving the above equations when simulating free-surface flows at
high Reynolds numbers1. Open source FVM codes include OpenFOAM (Weller
et al. 1998) and Gerris (Popinet 2003). Potential flow methods are also used
for simulation of non-breaking ocean waves (Tong et al. 2019), and ship-wave
interaction (Faltinsen 2005; Kring et al. 1997), but these methods require that
viscous effects and vorticity can be disregarded. Finite volume methods are able
to include these effects, and can produce exactly incompressible velocity fields.
By this we mean that the velocity is pointwise divergence-free, the velocity facet
fluxes sum to zero for each cell, and the velocity facet flux is continuous between
neighbouring cells. In the mentioned FVM programs, the free-surface advection
is implemented with the volume-of-fluid (VOF) method (Hirt and Nichols 1981),
which requires that the advected fluid-indicator function c is bounded, c ∈ [0, 1].

1FINE/Marine, FLOW-3D, Fluent, Orca3D, SHIPFLOW XCHAP, and StarCCM+ are
examples of proprietary FVM free-surface flow solvers used in the industry.

135

https://doi.org/10.21105/joss.01239

IV. Ocellaris: a DG FEM solver for free-surface flows

Numerical VOF advection methods rely upon divergence-free velocity fields to
ensure mass conservation and bounded transport.

Due to the piecewise constant discretisation, low-order FVM methods do not
suffer from Gibbs oscillations near the large jump in density and momentum
at the interface between the immiscible fluids, as long as an appropriate flux
limiter is applied (Leonard 1979). But there are some downsides to using low-
order methods. Increasing the approximation order is more computationally
efficient than increasing the mesh density in areas where the solution is expected
to be smooth, which for wave simulations is most of the domain away from
the free surface. Implementing higher-order FVM methods is complicated on
unstructured meshes, due to the need for large reconstruction stencils in order to
obtain higher-order approximations. Higher-order finite element methods (FEM),
such as the discontinuous Galerkin method (DG FEM), uses higher-order basis
functions in each cell to overcome this problem. The discontinuous nature of DG
FEM methods additionally allows more computation to be performed locally
with less coupling of cells, which can be beneficial for the overall computational
efficiency (see e.g. Kirby, Sherwin, and Cockburn (2012) and Kubatko et al.
(2009)).

Ocellaris is an exactly incompressible Navier–Stokes solver for free-surface
flows with a DG FEM based numerical method that supports higher-order finite
elements and contains specially designed slope-limiting stabilisation filters to
be able to handle large density transitions (Landet 2019; Landet, Mardal, and
Mortensen 2018). Ocellaris is implemented in Python and C++ with FEniCS
(Alnæs et al. 2015; Logg, Mardal, Wells, et al. 2012) as the backend for the
mesh and finite element assembly. PETSc is used for solving the resulting linear
systems (Balay, Abhyankar, et al. 2018; Balay, Gropp, et al. 1997; Dalcin et al.
2011; Davis 2004; hypre: High Performance Preconditioners n.d.).

Ocellaris uses a YAML based input file format documented in the user
guide available at ocellaris.org. The mesh geometry can be defined directly in
the input file for simple geometries, or it can be loaded from any file format
supported by meshio (Schlömer 2019), as long as the unstructured meshes are
simplicial; triangles in 2D and tetrahedra in 3D. Due to the flexible nature of
the implementation, custom numerical models can be added to a simulation
by referencing external Python modules from the input file. Ocellaris uses the
XDMF file format (The XDMF format 2019) for visualisations and a custom
HDF5 format for restart files (The HDF5 format 2019).

References

Alnæs, M. S. et al. (2015). “The FEniCS Project Version 1.5”. Archive of
Numerical Software 3.100.

Balay, S., Abhyankar, S., et al. (2018). PETSc Users Manual. Tech. rep. ANL-
95/11 - Revision 3.9. Argonne National Laboratory.

136

https://www.ocellaris.org

References

Figure IV.1: Cylinder in waves. Rendered in Blender after using Paraview to
extract the free surface from an Ocellaris simulation.

Balay, S., Gropp, W. D., et al. (1997). “Efficient Management of Parallelism in
Object Oriented Numerical Software Libraries”. In: Modern Software Tools in
Scientific Computing. Ed. by Arge, E., Bruaset, A. M., and Langtangen, H. P.
Birkhäuser Press, pp. 163–202.

Dalcin, L. D. et al. (2011). “Parallel distributed computing using Python”.
Advances in Water Resources 34.9. New Computational Methods and Software
Tools, pp. 1124–1139.

Davis, T. A. (2004). “Algorithm 832: UMFPACK V4.3—An Unsymmetric-
Pattern Multifrontal Method”. ACM Transactions on Mathematical Software
(TOMS) 30.2, pp. 196–199.

Faltinsen, O. M. (2005). Hydrodynamics of High-Speed Marine Vehicles. Cam-
bridge University Press.

Hirt, C. W. and Nichols, B. D. (1981). “Volume of fluid (VOF) method for
the dynamics of free boundaries”. Journal of Computational Physics 39.1,
pp. 201–225.

hypre: High Performance Preconditioners (n.d.). www.llnl.gov/CASC/hypre/.
Lawrence Livermore National Laboratory.

Kirby, R. M., Sherwin, S. J., and Cockburn, B. (2012). “To CG or to HDG: A
Comparative Study”. Journal of Scientific Computing 51.1, pp. 183–212.

Kring, D. et al. (1997). “Nonlinear Ship Motions and Wave-Induced Loads by
a Rankine Method”. In: Twenty-First Symposium on Naval Hydrodynamics
(June 24–28, 1996). Trondheim, Norway: The National Academies Press,
Washington, DC, pp. 45–63.

Kubatko, E. J. et al. (2009). “A Performance Comparison of Continuous and Dis-
continuous Finite Element Shallow Water Models”. Journal of Scientific
Computing 40.1, pp. 315–339.

Landet, T. (2019). The Ocellaris project web page, user guide and blog. www.ocellaris.org.

137

http://www.llnl.gov/CASC/hypre/
https://www.ocellaris.org/

IV. Ocellaris: a DG FEM solver for free-surface flows

Landet, T., Mardal, K.-A., and Mortensen, M. (2018). “Slope limiting the
velocity field in a discontinuous Galerkin divergence free two-phase flow
solver”. arXiv:1803.06976 [physics]. arXiv: 1803.06976.

Leonard, B. P. (July 1979). “Adjusted quadratic upstream algorithms for tran-
sient incompressible convection”. In: 4th Computational Fluid Dynamics
Conference. Williamsburg, VA, U.S.A: American Institute of Aeronautics and
Astronautics, pp. 226–233.

Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012). Automated Solution of
Differential Equations by the Finite Element Method. Springer.

Popinet, S. (2003). “Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries”. Journal of Computational Physics
190.2, pp. 572–600.

Schlömer, N. (2019). meshio. github.com/nschloe/meshio.
The HDF5 format (2019). www.hdfgroup.org.
The XDMF format (2019). xdmf.org.
Tong, C. et al. (May 2019). “Numerical analysis on the generation, propagation

and interaction of solitary waves by a Harmonic Polynomial Cell Method”.
Wave Motion 88, pp. 34–56.

Weller, H. G. et al. (1998). “A tensorial approach to computational continuum
mechanics using object-oriented techniques”. Computers in Physics 12.6,
pp. 620–631.

138

https://arxiv.org/abs/1803.06976
https://github.com/nschloe/meshio/
https://www.hdfgroup.org/
http://xdmf.org/

Back matter

Concluding words

Conclusion

A novel higher-order method for simulation of free surface flows has been pre-
sented. The new method adds a slope limiting strategy for solenoidal velocity
fields to an existing single-phase DG FEM Navier–Stokes solution method. Both
the selected DG SIP method for solving the incompressible Navier–Stokes equa-
tions and the new slope limiter are exactly mass conserving. This means that at
any point inside an element the divergence of the (convecting) velocity field is
machine-precision zero, and that the normal flux across element boundaries is
continuous. The resulting solver is shown to be able to handle the factor-1000
jump in the density field between simulated water and air phases, and both 2D
and 3D simulations compare favourably to model tests.

Novelty

In the search for more efficient and accurate methods for free-surface flows,
it is important to start exploring the use of higher-order numerical methods.
The main contribution of this thesis is using an exactly divergence-free higher-
order discontinuous Galerkin finite element methods (DG FEM) for solving the
variable-density Navier–Stokes equations in the presence of the large jump in
density found in air/water flows.

The work consists of four main parts. Paper I presents a new slope-limiting
stabilisation method for velocity fields, and forms the main building block of
the thesis. The new method allows the convected velocity field to be slope
limited, and hence stabilised, while the convecting velocity field remains exactly
divergence free. The results from the new method are compared to free-surface
model tests (2D), such as the classic dam-break test.

Paper II compares existing pressure-splitting methods for solving the Navier–
Stokes equations with a focus on fast solutions of the DG SIP discretisation used
in the first paper. Special attention is put on maintaining exact incompressibility,
and the paper discusses the specific choices that must be taken in order to
maintain machine-zero divergence. The paper makes a recommendation for
which method to use.

Paper III shows 3D simulations using the slope limiter from the first paper
coupled with the best-performing pressure-splitting scheme from the second
paper. Paper III additionally features the inclusion of an existing forcing-zone
approach to handle traveling free-surface waves in a finite domain without
reflection. This is used with an existing potential-theory model for regular waves.
In order to be compatible, and hence provide exactly divergence-free initial and

141

IV. Ocellaris: a DG FEM solver for free-surface flows

boundary conditions, the potential-theory wave description is almost adequate,
but a novel blending method is included as a simple solution to the problem
posed by the discontinuity in the (potential theory) velocity field at the free
surface.

The fourth part of the work is the fully documented numerical solver code,
written in the FEniCS framework for solving PDEs, and briefly described in
Paper IV. The common theme throughout the work is the divergence-free
velocity constraint and the use of higher-order methods without smoothing of
the coefficient fields.

Suggestions for further work

I hope that having a relatively simple, numerically stable, well documented, and
exactly mass-conserving higher-order method to build upon will make it easier
and more attractive to explore numerical methods for the study of free-surface
physics with higher-order methods. It is with this hope in mind that the full
code and input files to all the presented simulations are made available. Some
possible next steps for such research work are outlined below.

Free surface capturing

The two-phase free surface simulations presented in this work have been per-
formed with a standard piecewise-constant Volume-of-Fluid (VOF) method. A
relatively simple extension would be to use a refined mesh for the VOF calcu-
lations, dividing each cell used in the higher-order Navier–Stokes solver into
multiple sub-cells used for the low-order VOF solver. Currently the implemented
HRIC VOF solver uses a very small fraction of the computational resources
compared to the Navier–Stokes solver. The inability of the method to resolve
sub-cell features of the free surface forces the use of meshes that are finer than
what would potentially be needed if sub-cell features could be resolved. Hence,
using a courser mesh resolution for the pressure and velocity, and finer resolution
for the VOF colour function, could lead to a more efficient method where the
VOF calculations use a larger fraction of the computational resources, while
giving a similar or better resolved solution at lower overall computational cost.

The density field is either constant or has a sharp jump in each cell, so it is
not given that using a higher-order method will give any benefits. That being
said, there are multiple new methods for surface capturing and level-set/VOF
coupling available in recent publications, see the discussion in sections 1.3 and 1.4
for an overview. Comparing such methods to a low-order mass-conserving VOF
method on a sub-divided mesh would be an interesting topic for a paper.

Extended FEM

Just like the sub-cell capturing of the free surface discussed above, allowing
sub-cell discontinuities in the momentum to be resolved by augmenting the

142

References

approximating functions in the intersected cells with a sharp jump at the free
surface could give large benefits such as reduced need for slope limiting and
hence higher order solutions close to the free surface. XFEM methods that do
this have been explored in the literature, e.g. to resolve the jump in pressure
at the free surface when surface tension is included (Groß and Reusken 2007,
see Free surface description in section 1.3). It is not given that including a
jump in the (continuous) velocity will stabilise the jump in the (discontinuous)
momentum. Neither is it necessarily straight forward to find the exact position
of the free surface without using some form of geometric reconstruction instead
of the algebraic VOF method used here.

Matrix-free multi-grid methods

Recent research on fast scalable solvers for higher-order DG methods shows
that the solution process can be made significantly faster by combining specially
tailored multigrid pre-conditioners with matrix-free solvers (see e.g. Fehn, Munch,
Wall, and Kronbichler’s preprint from 2019 along with their prior work listed in
the literature review in section 1.4). The specialised multi-grid preconditioner
converts from discontinuous to continuous representations as a part of the multi-
grid cycle, and is hence less affected by the magnitude of the penalty factor
required for coercivity of elliptic terms. By combining this pre-conditioner with
a matrix-free solver, the solution of standard DG SIP formulations (as used in
this work) can be made much faster, and even faster than equivalent methods
for hybridised DG formulations, which is the other obvious way to increase the
speed of the DG Navier–Stokes solver. While algorithmic improvements, such as
adaptivity (discussed below), are very important, fast linear-algebra solvers for
the existing method could also be a very interesting path for future development.

Adaptivity

As mentioned in the introduction, the most efficient numerical method is h-
adaptive close to discontinuities and P -adaptive in areas where the solution is
smooth—it uses small low-order elements to resolve any discontinuities and larger
high-order elements in smooth areas to optimise resolving power per degree of
freedom. Free-surface flows are characterised by the presence of a discontinuity
in the density field, so including some form of h-adaptivity would be a good
starting point along with support for varying the polynomial order in the domain.
This task is not small, and a successful implementation must not only support
dynamic remeshing in a stable and controllable way, it must also do this in a
very efficient manner such that computational cost is significantly lower than
in a non-adaptive code to justify the added complexity. There exist codes that
are able to do this (see e.g Basilisk referenced in section 1.2), but these codes
are still works in progress and are low order only. It is likely that an efficient
h-adaptive method must be written from the ground up for fast mesh refinement
to really reap the full benefits of adaptivity.

143

IV. Ocellaris: a DG FEM solver for free-surface flows

Consistency of viscous term

The standard symmetric interior penalty method for dealing with the elliptic
viscous term in discontinuous Galerkin discretisations will not work if a slope
limiter flattens all derivatives, unlike a finite-volume method which reconstructs
the viscous fluxes from the cell average values. For areas of the solution where the
viscosity is important, such errors in the viscous flux can lead to inconsistencies.
It is possible to construct DG methods for elliptic terms that are equivalent to
cell-centered finite-volume discretisations in the piecewise-constant case. The
studies shown in this work have all been convection dominated, but it would be
an interesting study to see the influence of this inconsistency by implementing
a consistent discretisation of the elliptic term and compare with the existing
standard DG SIP implementation.

Initial and boundary conditions for wave simulations

In Paper III a blending function is introduced ad-hoc to provide a divergence
free and continuous velocity field for the Fenton stream-function waves and
the air-phase above. This blending function determines the initial boundary
layer position, shape and height. By investigating waves in the laboratory
with velocimetry to capture the real air/water wave boundary layer, performing
numerical simulations, or obtaining such velocity fields from published literature,
it could be possible to provide an analytical velocity field that more closely
approximates the combined air and water flow near a free-surface wave. By
basing the method on potential theory for the physics of the two domains it will
of course not be in absolute agreement with the real physics, but this approach
enables analytical expressions and—since viscosity has a limited influence away
from the free surface—it could be possible to get a good approximation by
localised stream-function blending similar to what is described in the Paper III.
This would enable enforcing initial and boundary conditions which are closer to
the real Navier–Stokes solution of the problem, and a perhaps such an analytical
combined velocity field could be used as a simplified tool for the study of air/wave
interaction.

Slope limiters

As discussed in the introduction (and explored further in the appendix), using
the hierarchical slope limiter close to the boundaries can lead to excessive limiting
due to the lack of known "safe" bounds on the limited function and its derivatives
on the out-of-domain side of the boundary. This can be remedied by using an
immersed boundary formulation, implementing ghost cells layers or using a slope
limiter close to the wall that subdivides the mesh into a finer sub-mesh and uses
a low-order stable method as a slope limiter. The last option requires re-solving
the problem locally using a different method and may hence require the solver
to be implemented twice, in addition to sub-mesh generation and projections to
and from the low order method, so it may be a quite large undertaking.

144

References

It would also be very interesting to compare the slope limiter to e.g. a
spectral filter for regular domains such as numerical wave flume. As the slope
limiter is a purely explicit post-processing operator there is quite some room to
be creative as the coupling to the rest of the code is low. It would also be a
nice addition to compare the current component-wise slope limiter to a limiting
procedure working on the velocity magnitude and direction fields. This would
highlight any influence of the coordinate-system dependency of the current slope
limiter implementation.

145

Appendices

Appendix A

Example: Lid-driven cavity flow

A.1 Introduction

The lid-driven cavity flow simulation is a classic benchmark for 2D flow where the
domain consists of a unit square with rigid walls on three sides and an enforced
horizontal velocity on the top face, the moving lid, see figure A.1. Here we
take one of the parameter choices from the reference solutions in U. Ghia, K. N.
Ghia, and Shin (1982). A kinematic viscosity of ν = 0.001 is used, leading to a
Reynolds number of 1000. The result, after the simulation has been given some
time to stabilise, is a steady-state vortex flow in the domain. The velocity profiles
in the horizontal and vertical directions are studied by taking a vertical and a
horizontal cut through the centre of the domain and recording the steady-state
velocity components.

x = y = 0

x = y = 1u = 1

Figure A.1: The driven cavity benchmark geometry.

Ocellaris can read files generated by external meshing programs, but to
generate a suitable mesh for the driven cavity problem—with refinement towards
the top corners in the square domain—it is perhaps easiest to generate a perfectly
regular mesh by the built-in mesh generation routines and then tell Ocellaris to
move the mesh according to a given function. Here this option is used and a
displacement-function is specified to move the x-coordinates of the mesh nodes
towards the vertical walls and the y-coordinates towards the lid. Given a mesh
of a domain with size 1.0 m by 1.0 m with the origin in the lower left corner,
the displacement is such that the change is −0.07 m at x = 0.1 m and 0.07 m at
x = 0.9 m. A polynomial is fitted to these criteria in addition to the requirement
that the displacement of the walls is zero. Similarly, the mesh nodes are moved
vertically 0.07 m at y = 0.9 m. The nodal displacement function is then

xnew = x− 1.9444x3 + 2.9167x2 − 0.9723x, (A.1)
ynew = y − 0.7778y2 + 0.7778y. (A.2)

149

A. Example: Lid-driven cavity flow

A.2 Results

The simulation described above was run twice, the only difference being whether
the slope limiter was turned on or not. The starting mesh was 40× 40 squares,
divided into two triangles each. The IPCS-A pressure-correction solver was used
with two inner iterations per time step. The results can be seen in figure A.2.
As can be seen, for this case the application of the slope limiter has very little
impact on the flow.

0.25 0.00 0.25 0.50 0.75 1.00
u

0.0

0.2

0.4

0.6

0.8

1.0

y

No limiter
HT limiter
Ghia et al

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.2

0.0

0.2

0.4

v

Figure A.2: Steady-state velocity components. Velocity in horizontal direction
(u, on the left) and vertical direction (v, on the right). The horizontal component
is extracted from a vertical cut through the centre of the domain, and the vertical
component is extracted from a horizontal cut through the centre of the domain.
The comparison values (X-marks) are from U. Ghia, K. N. Ghia, and Shin (1982).

A.3 Input file

An example input file for Ocellaris, used to compute the above results, is shown
below. This is the input file for the slope limited case.

ocellaris:
type: input
version: 1.0

physical_properties:
g: [0, 0]
nu: 0.001
rho: 1.0

mesh:
type: Rectangle
Nx: 40
Ny: 40
move:
- -1.944444444*pow(x[0], 3) + 2.916666667*pow(x[0], 2) +

-0.9722222222*x[0] + -7.771561172e-16
- -0.7777777778*pow(x[1], 2) + 0.7777777778*x[1] + 0

150

Input file

time:
dt: 0.01
tmax: 30.0

boundary_conditions:
- name: walls

selector: code
inside_code: on_boundary
u:

type: ConstantValue
value: [0, 0]

- name: lid # overrides the "walls" above since it is defined later
selector: code
inside_code: on_boundary and x[1] >= 1.0 - 1e-8
u:

type: ConstantValue
value: [1, 0]

solver:
type: IPCS-A
num_inner_iter: 2
allowable_error_inner: 1e-3
steady_velocity_stopping_criterion: 3.0e-5

slope_limiter:
u:

method: Componentwise
comp_method: HierarchicalTaylor

output:
prefix: lid_driven_cavity_flow
xdmf_write_interval: 100

probes:
- name: u-vel center

type: LineProbe
field: u0
startpos: [0.5, 0]
endpos: [0.5, 1]
Npoints: 100
file_name: uprobe.txt
write_interval: 10

- name: v-vel center
type: LineProbe
field: u1
startpos: [0, 0.5]
endpos: [1, 0.5]
Npoints: 100
file_name: vprobe.txt
write_interval: 10

151

A. Example: Lid-driven cavity flow

References

Ghia, U., Ghia, K. N., and Shin, C. T. (1982). “High-Re solutions for incom-
pressible flow using the Navier-Stokes equations and a multigrid method”.
Journal of Computational Physics 48.3, pp. 387–411.

152

Appendix B

Example: Taylor–Green vortex

B.1 Introduction

The 2D Taylor–Green vortex problem was shown in Paper I and Paper II. A
domain with (x, y) ∈ [0, 2]2, kinematic viscosity ν = 0.005 and analytical solution

u = − sin(πy) cos(πx) exp(−2π2νt)
v = sin(πx) cos(πy) exp(−2π2νt) (B.1)
p = −1/4 ρ(cos 2πx+ cos 2πy) exp(−4π2νt)

is simulated for t ∈ [0, 1] with ∆t = 0.01. Here the same setup is repeated with a
larger selection of discretisations and a focus on assessing the numerical viscosity
of the method. Unlike in the first paper, here the IPCS-A solver described in
Paper II is used for efficiency reasons. Two inner iterations of the solver are run
per time step.

B.2 Assessing the numerical viscosity

To assess the influence of the numerical dissipation, we start from the momentum
equation for incompressible single-phase flow,

ρ
∂u

∂t
+∇ · (ρu⊗ u) = µ∇2u−∇p, (B.2)

and multiply this by u to form the equation for the kinetic energy, ek = 1
2ρu ·u,

∂ek
∂t

+∇ · (uek)− µu · ∇2u+ u∇p = 0. (B.3)

The numerical dissipation, εn, can now be estimated and compared to
the viscous dissipation, εv. The implementation here follows Castiglioni and
Domaradzki (2015) and Schranner et al. (2015) and computes the numerical
dissipation directly from the discrete velocity field. The numerical dissipation is
the (negative) residual of the equation for kinetic energy (B.3), integrated over
a sub-domain Tm,

∂Ek
∂t

+ Fk − Fv + Fa + εv = −εn (B.4)

where the volume-integrated kinetic energy is computed as

Ek =
∫
Tm

1
2ρu · udx, (B.5)

153

B. Example: Taylor–Green vortex

and ∂Ek
∂t is then approximated by second order central differences,

∂Ek
∂t
≈
En+1
k − En−1

k

2∆t . (B.6)

The kinetic energy flux is

Fk =
∫
Tm
∇ · (uek) dx, (B.7)

and the acoustic flux is

Fa =
∫
Tm
∇ · (up) dx, (B.8)

since the pressure term in equation (B.3) can be rewritten as

u · ∇p = ∇ · (up)− p∇ · u = ∇ · (up). (B.9)

The viscous term from equation (B.3) is rewritten and split into a viscous flux,
Fv, and a viscous dissipation, εv, from

µu · ∇2u = µ∇ · (u · ∇u)− µ∇u : ∇u

= ν∇2(1
2ρu · u)− µ∇u : ∇u (B.10)

leading to

Fv =
∫
Tm

1
2µ∇

2(u · u) dx, (B.11)

εv =
∫
Tm

µ∇u : ∇udx. (B.12)

To assess the influence of the numerical dissipation on the simulation, the
ratio of numerical to viscous dissipation is calculated, r = εn

εv
. This ratio can be

multiplied by the physical kinematic viscosity to obtain the equivalent numerical
kinematic viscosity, νn = νr.

The numerical dissipation is computed in a subset of the mesh cells, Tm ⊆ T .
Multiple such sub-domains can be selected to study the appropriateness of the
mesh resolution in different areas of interest, and this can then be used in a
mesh refinement procedure, see Sun et al. (2017). Note that the selected sub-
domain Tm must be sufficiently large for the residual to be mostly dissipative,
otherwise dispersion errors may influence the results. The sub-domain should
also contain areas of viscous shear for the comparison between numerical and
physical dissipation to make sense. Also note that the effective Reynolds number,
including both physical and numerical diffusion, can be written

Reeff = Re
1 + r

. (B.13)

For more details on estimating the numerical dissipation from the study
of the discrete velocity field, see e.g. Cadieux, Sun, and Domaradzki (2017),
Castiglioni and Domaradzki (2015), Fehn, Wall, and Kronbichler (2018), Komen
et al. (2017), and Schranner et al. (2015).

154

Results

B.3 Results

The sources of kinetic energy diffusion are computed in Tm = T for each
simulation, and the time-averaged value of the ratio of numerical to viscous
dissipation is reported, r̄. The numerical domain is divided into N ×N squares
which are each subdivided into two triangles. The results for a set of numerical
discretisations are shown in table B.1. In the table P2P1 means that DG
elements with bi-quadratic polynomials are used for the velocity while bi-linear
DG elements are used for the pressure. As can be seen the numerical diffusion
decreases with decreasing element sizes, and the combined numerical and physical
viscosities never become negative.

It is clear from table B.1 that the equal-order discretisations performs signifi-
cantly worse in terms of numerical viscosity compared to the P2P1 and P3P2
discretisations. The choice of equal discretisation orders for the velocity and
pressure fields violates the inf–sup/LBB criterion, even when the solver employed
is a pressure-correction solver, and this leads to oscillations in the pressure field
(Codina 2001; Guermond and Quartapelle 1998). When comparing the terms in
equation (B.4) it is clear that it is the pressure-related acoustic flux term, Fa,
that is the problem, see figure B.1. It can also be seen in figure B.2 that the
velocity converges with the expected order, while the pressure does not for the
equal orders.

Table B.1: Time averaged numerical diffusion ratio, εn in percent of εv.

DG elements N = 10 N = 20 N = 30 N = 40
P2P1 52.3% 16.0% 7.4% 4.3%
P2P2 94.9% 29.6% 13.6% 7.4%
P3P2 -1.4% -0.3% -0.1% -0.1%
P3P3 -26.6% -6.4% -2.5% -1.2%

0.0 0.2 0.4 0.6 0.8 1.0
time

4

2

0

2

4

Te
rm

P1P1
Ek
t

Fk

Fa

Fv

v

n

0.0 0.2 0.4 0.6 0.8 1.0
time

0.2

0.1

0.0

0.1

0.2

Te
rm

P2P1
Ek
t

Fk

Fa

Fv

v

n

Figure B.1: Terms from equation (B.4) for P1P1 and P2P1 discretisations at
N = 40.

155

B. Example: Taylor–Green vortex

N = 10 20 30 40
10 6

10 5

10 4

10 3

10 2

L 2
er

ro
ru

u

P2P1 (order 3.6)
P2P2 (order 3.4)
P3P2 (order 4.6)
P3P3 (order 4.5)

N = 10 20 30 40

10 4

10 3

10 2

10 1

L 2
er

ro
rp

p

P2P1 (order 2.8)
P2P2 (order 0.9)
P3P2 (order 3.0)
P3P3 (order 2.4)

Figure B.2: L2 error of the velocity and pressure fields. The convergence orders
shown in parentheses are the average for the line. The observed super-convergence
for some results is due to the highly regular mesh.

To investigate the accuracy of the computed numerical dissipation from
equation (B.4), three additional (physical) kinematic viscosities were investigated
for the P2P1 discretisation. The results can be found in table B.2. As can be
seen the estimates seem relatively accurate when comparing the results from
ν = 0.01 and ν = 0.001 (i.e. there is approximately a factor 10 difference in
εn/εv for the finer meshes), but the results for ν = 0.02 and ν = 0.005 are much
closer to the results for ν = 0.01 than would be appropriate for their size. Still
it seems that the computed numerical viscosity works well as an indicator to
assess the diffusive influence of the numerical scheme on the results.

Table B.2: Time averaged numerical diffusion ratio, εn in percent of εv, for four
different kinematic viscosities, using P2P1 elements.

Viscosity N = 10 N = 20 N = 30 N = 40
ν = 0.02 40.7% 11.4% 5.1% 2.7%
ν = 0.01 44.7% 12.5% 5.7% 3.2%
ν = 0.005 52.3% 16.0% 7.4% 4.3%
ν = 0.001 109.6% 74.9% 44.4% 28.5%

Finally, to see the impact of the choice of solver and the slope limiter, two
more test are presented in table B.3, still compared to the P2P1 discretisation.
The IPCS-A solver used for the other results is compared to the Coupled solver
which does not have any splitting errors due to using a direct sparse solver to
solve for the velocity and pressure at the same time. Also included is the IPCS-A
solver with the hierarchical Taylor-polynomial based velocity-field slope limiter.
As can be seen the differences are marginal except for the coarsest resolution
where the limiter detects unwanted wiggles in the velocity field and proceeds
to smoothen out the slopes, introducing some diffusion. For the better resolved
test cases the limiter does not influence the field in a noticeable way.

156

Input file

Table B.3: Time averaged numerical diffusion ratio, εn in percent of εv, for three
different solver options.

Solver N = 10 N = 20 N = 30 N = 40
IPSC-A 52.3% 16.0% 7.4% 4.3%
Coupled 52.4% 16.0% 7.4% 4.2%
IPSC-A + limiter 84.8% 17.4% 7.6% 4.3%

B.4 Input file

An example input file for Ocellaris, used to compute the above results, is shown
below. This is the P2P1 input file for ν = 0.05 and N = 40.

ocellaris:
type: input
version: 1.0

physical_properties:
g: [0, 0]
nu: 0.005
rho: 1.0

mesh:
type: Rectangle
Nx: 40
Ny: 40
endx: 2
endy: 2

boundary_conditions:
- name: walls

selector: code
inside_code: on_boundary
u:

type: CppCodedValue
cpp_code:
- -sin(pi*x[1]) * cos(pi*x[0]) * exp(-2*pi*pi*nu*t)
- sin(pi*x[0]) * cos(pi*x[1]) * exp(-2*pi*pi*nu*t)

initial_conditions:
up0:

cpp_code: -sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*t)
up1:

cpp_code: sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*t)
upp0:

cpp_code: -sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*(t-dt))
upp1:

cpp_code: sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*(t-dt))
p:

cpp_code: -(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*t)/4

time:
dt: 0.01

157

B. Example: Taylor–Green vortex

tmax: 1.0

output:
prefix: taylor_green_out

solver:
type: IPSC-A
num_inner_iter: 2
polynomial_degree_velocity: 2
polynomial_degree_pressure: 1
function_space_velocity: DG
function_space_pressure: DG

slope_limiter:
u: # Only active when this method = Componentwise

method: None
comp_method: HierarchicalTaylor
skip_boundaries: ["walls"]

hooks:
post_timestep:

- name: Compute l2 error
code: |

cppu = "-sin(pi*x[1])*cos(pi*x[0])*exp(-2*pi*pi*nu*t)"
cppv = "sin(pi*x[0])*cos(pi*x[1])*exp(-2*pi*pi*nu*t)"
cppp = "-(cos(2*pi*x[0]) + cos(2*pi*x[1])) * exp(-4*pi*pi*nu*t)/4"
ua = Expression(cppu, nu=nu, t=t, degree=7)
va = Expression(cppv, nu=nu, t=t, degree=7)
pa = Expression(cppp, nu=nu, t=t, degree=7)

def calc_err(f_num, e_ana):
V = f_num.function_space()
f_ana = project(e_ana, V)
f_err = dolfin.Function(V)
f_err.vector()[:] = f_ana.vector()[:] - f_num.vector()[:]
return dolfin.norm(f_err) / dolfin.norm(f_ana)

simulation.reporting.report_timestep_value(’errU’, calc_err(u0, ua))
simulation.reporting.report_timestep_value(’errV’, calc_err(u1, va))
simulation.reporting.report_timestep_value(’errP’, calc_err(p, pa))

- name: Assess the numerical viscosity
code: |

ek = 0.5 * rho * dot(u, u)
Ek = assemble(ek * dx)
Fk = assemble(div(u * ek) * dx)
Fa = assemble(div(u * p) * dx)
Fv = assemble(nu * div(grad(ek)) * dx)
eps_v = assemble(mu * inner(nabla_grad(u), nabla_grad(u)) * dx)
simulation.reporting.report_timestep_value(’MyEk’, Ek)
simulation.reporting.report_timestep_value(’MyFk’, Fk)
simulation.reporting.report_timestep_value(’MyFa’, Fa)
simulation.reporting.report_timestep_value(’MyFv’, Fv)
simulation.reporting.report_timestep_value(’MyEpsV’, eps_v)

158

References

References

Cadieux, F., Sun, G., and Domaradzki, J. A. (2017). “Effects of numerical
dissipation on the interpretation of simulation results in computational fluid
dynamics”. Computers & Fluids 154, pp. 256–272.

Castiglioni, G. and Domaradzki, J. A. (2015). “A numerical dissipation rate
and viscosity in flow simulations with realistic geometry using low-order
compressible Navier–Stokes solvers”. Computers & Fluids 119, pp. 37–46.

Codina, R. (2001). “Pressure Stability in Fractional Step Finite Element Methods
for Incompressible Flows”. Journal of Computational Physics 170.1, pp. 112–
140.

Fehn, N., Wall, W. A., and Kronbichler, M. (2018). “Robust and efficient discon-
tinuous Galerkin methods for under-resolved turbulent incompressible flows”.
Journal of Computational Physics 372, pp. 667–693.

Guermond, J.-L. and Quartapelle, L. (1998). “On stability and convergence
of projection methods based on pressure Poisson equation”. International
Journal for Numerical Methods in Fluids 26.9, pp. 1039–1053.

Komen, E. M. J. et al. (2017). “A quantification method for numerical dissipation
in quasi-DNS and under-resolved DNS, and effects of numerical dissipation
in quasi-DNS and under-resolved DNS of turbulent channel flows”. Journal
of Computational Physics 345, pp. 565–595.

Schranner, F. S. et al. (2015). “Assessing the numerical dissipation rate and
viscosity in numerical simulations of fluid flows”. Computers & Fluids 114,
pp. 84–97.

Sun, G. et al. (2017). “Assessing accuracy of CFD simulations through quantifi-
cation of a numerical dissipation rate”. In: Proceedings of TSFP-10 (2017)
Chicago. Chicago, USA, p. 6.

159

Appendix C

Example: flow around 2D cylinder

C.1 Introduction

In this example the Turek–Schäfer CFD benchmark case DFG 2D-2 Schäfer et al.
(1996) is studied with a focus on the interaction between the viscous shear at
the cylinder and the slope limiter. The geometry is shown in figure C.1.

0.2

0.21

0.2 2.0

r=0.05

Figure C.1: The DFG 2D-2 benchmark geometry.

The velocity at the inlet (the leftmost vertical wall) is parabolic with zero
velocity at the top and bottom and a maximum horizontal velocity of umax = 1.5
in the center. When taking the origin to be the lower left corner and the x and
y axes pointing right and up respectively, the inlet velocity is

u = 2umax y (0.41− y) 0.41−2, (C.1)
v = 0. (C.2)

Just like in Paper III, a forcing zone is used towards the outlet, starting at
the horizontal centre of the domain and ramping up to a maximum penalty of
10 at the outlet, forcing the computed velocity towards the inlet velocity. In
this way the inlet velocity can be used as a Dirichlet boundary condition for the
whole domain, except for the circular cylinder where u = v = 0.

The average inlet velocity is uavg = 1.0, giving a Reynolds number of

Re = uavg 2r
ν

= 1.0 · 0.1
0.001 = 100, (C.3)

a regime where periodic vortex shedding will be triggered by the cylinder, causing
a vortex street to form behind the cylinder.

It should be noted that the following results are not the product of a thorough
investigation. Only one mesh has been tested and no particular tuning of any of
the parameters has been done. First order geometry is used for the mesh (see
figure C.4), so the curvature of the cylinder is described with linear elements.
Ocellaris, through FEniCS, supports higher order geometry, but the parts of
the code that directly work with cell geometries and degrees of freedom (only
the slope limiter in this instance) would need to be thoroughly investigated and
validated for use with higher-order geometry, and this has not been done.

161

C. Example: flow around 2D cylinder

C.2 Results

In addition to showing the application of Ocellaris to a common benchmark
problem, this results section will focus on the problems caused by applying
the slope limiter close to the boundaries. As described in section 1.7, since no
neighbour information is available on the outside of the domain, the limiter will
tend to over-flatten slopes of elements close to the boundaries. The results are
hence reported for a simulation with the slope limiter disabled, a simulation
with the slope limiter turned on, and lastly a simulation with the slope limiter
enabled in cells not touching a boundary.

In figure C.2 the results are compared to the benchmark values CD = 3.2200,
CL = 0.9859 and St = 0.30188. In general the non-limited simulation performs
well, the partially limited simulation is less good and the fully limited solution is
worst. The fact that the partially limited simulation is not as good as non-limited
solution suggests further studies are needed and that perhaps the development of
a troubled cell indicator that takes into account the position of the free surface
could be integrated in order to restrict the limiter only to areas where it is
needed for stability of the solver.

The the peak values of the total force on the cylinder in x and y direction
are used to compute the coefficients and the Strouhal number. The frequency f
is the inverse of the time between peaks in the lift force. The formulas used are

CD = (2Fx)/u2
avg, (C.4)

CL = (2Fy)/u2
avg, (C.5)

St = (2rf)/uavg. (C.6)

Not limited Limited Partly limited
0.0%

0.5%

1.0%

1.5%

Re
la

tiv
e

er
ro

r

CD

Not limited Limited Partly limited
0.0%

5.0%

10.0%

15.0%

Re
la

tiv
e

er
ro

r

CL

Not limited Limited Partly limited
0.0%

0.2%

0.4%

0.6%

0.8%

Re
la

tiv
e

er
ro

r

St

Figure C.2: The relative error, |(C − Cref)/Cref|, of the drag and lift coefficients
and the Strouhal number are shown separately. The values are computed from
the peaks in the time series of combined viscous and pressure forces.

Lastly, the numerical dissipation is computed for the area close to the cylinder
(within three radiuses of the cylinder center in both x and y directions). The
results show that the velocity slope limiter induces numerical viscosity. This
is reasonable and as expected. The numerical viscosity is presented as εn in
percent of εv, as explained in the previous appendix. The results are shown in
figure C.3. The numerical viscosity stabilises quite rapidly (the same is true for
the drag and lift coefficients, not shown here).

162

Input file

0 1 2 3 4 5 6
t [s]

-20%

0%

20%

40%

60%
n/

v

Limited

Partly limited

Not limited

Figure C.3: Numerical viscosity near the cylinder.

C.3 Input file

The Gmsh (Geuzaine and Remacle 2009) geometry file is attached below

//
// Created on 2018-04-20 by Tormod Landet
// Surface piering bottom mounted cylinder
// in a wave flume
SetFactory("OpenCASCADE");

//
// Parameters

// Geometrical parameters
DefineConstant[R = { 0.05, Name "Parameters/Cylinder radius" }];
DefineConstant[L = { 2.20, Name "Parameters/Domain length" }];
DefineConstant[B = { 0.41, Name "Parameters/Domain breadth" }];
DefineConstant[Cx = { 0.20, Name "Parameters/Cylinder dist from inlet" }];
DefineConstant[Cy = { 0.20, Name "Parameters/Cylinder dist from bottom" }];

// Mesh parameters
Q = 6; // Coursener, lower value gives finer mesh
DefineConstant[lc_fine = {0.001 * Q, Name "Parameters/LC fine" }];
DefineConstant[lc_med = {0.002 * Q, Name "Parameters/LC medium" }];
DefineConstant[lc_course = {0.010 * Q, Name "Parameters/LC course" }];

//
// Geometry

// The domain
domain = newv; Rectangle(domain) = {0, 0, 0, L, B};

// The cylinder
cylinder = newv; Disk(cylinder) = {Cx, Cy, 0, R};

// Delete cylinder from domain
domain_new = newv;

163

C. Example: flow around 2D cylinder

BooleanDifference(domain_new) =
{ Surface{domain}; Delete; }{ Surface{cylinder}; Delete; };

domain = domain_new;

//
// Mesh cell size fields:

// Vortex street
Field[80] = MathEval;
Field[80].F =
Sprintf("(((x - %g)/%g)^2 + ((y - %g)/%g)^2)^0.5", Cx + 6*R, 8*R, Cy, 4*R);

Field[88] = Threshold;
Field[88].DistMax = 3;
Field[88].DistMin = 1;
Field[88].IField = 80;
Field[88].LcMax = lc_course;
Field[88].LcMin = lc_med;

// Overall mesh grading
Field[90] = MathEval;
Field[90].F =
Sprintf("(((x - %g)/%g)^2 + ((y - %g)/%g)^2)^0.5", Cx + R, 1.7*R, Cy, 1.2*R);

Field[99] = Threshold;
Field[99].DistMax = 15;
Field[99].DistMin = 1;
Field[99].IField = 90;
Field[99].LcMax = lc_course;
Field[99].LcMin = lc_fine;

// The resulting mesh size field is the minimum of the above fields
Field[100] = Min;
Field[100].FieldsList = {88, 99};
Background Field = 100;

//
// Physical domains

Physical Volume(100) = { domain }; // The fluid domain

// The end, code below is added by gmsh GUI
//

The mesh generated from the above input file can be seen in figure C.4.
There are approximately 9000 cells.

Figure C.4: The generated mesh.

164

Input file

An example input file for Ocellaris, used to compute the above results, is
shown below. This is the input file for the partially slope limited case.

ocellaris:
type: input
version: 1.0

metadata:
author: Tormod Landet
date: 2019-11-02
description: |

Flow around a 2D cylinder, CFD Benchmarking project
DFG benchmark 2D-2, Re100, periodic
http://www.featflow.de/en/benchmarks/cfdbenchmarking/
flow/dfg_benchmark2_re100.html

user_code:
constants:

B: 0.41
R: 0.05
L: 2.20
Cx: 0.2
Cy: 0.2
MIN_DT: 0.00003
MAX_DT: 0.01
CRIT_CO: 0.03

physical_properties:
g: [0, 0]
nu: 0.001
rho: 1.0

mesh:
type: meshio
mesh_file: ../cylinder2D_only_triangles_Q6.msh

fields:
- name: inletvelocity

type: VectorField
variable_name: u
cpp_code:
- "4 * 1.5 * x[1] * (B - x[1]) / B / B"
- "0.0"

- name: outlet zone
type: ScalarField
variable_name: beta
cpp_code: |

[&]() {
double dz0 = L / 2;
double dz1 = L;
if (x[0] < dz0) {

return 0.0;
} else if (x[0] > dz1) {

return 1.0;
} else {

165

C. Example: flow around 2D cylinder

return pow((x[0] - dz0)/(dz1 - dz0), 2);
}

}()

boundary_conditions:
- name: InletOutlet

selector: code
inside_code: on_boundary
u0:

type: FieldFunction
function: inletvelocity/u0

u1:
type: ConstantValue
value: 0

- name: TopBottom
selector: code
inside_code: on_boundary and (x[1] < 1e-6 or x[1] > B - 1e-6)
u0:

type: ConstantValue
value: 0

u1:
type: ConstantValue
value: 0

- name: Cylinder
selector: code
inside_code: >-

on_boundary and x[0] > Cx - 1.1*R and x[0] < Cx + 1.1*R
and x[1] > Cy - 1.1*R and x[1] < Cy + 1.1*R

u0:
type: ConstantValue
value: 0

u1:
type: ConstantValue
value: 0

forcing_zones:
- name: outlet velocity damping

type: MomentumForcing
zone: outlet zone/beta
target: inletvelocity/u
penalty: 10
plot: yes

time:
dt: 0.001
tmax: 30.0

solver:
type: IPCS-A
num_inner_iter: py$ 10 if it < 10 else 2

slope_limiter:
u: # Only active when method is "Componentwise"

method: Componentwise

166

Input file

comp_method: HierarchicalTaylor
skip_boundaries: ["all"]

output:
prefix: flow_past_cylinder
xdmf_write_interval: 20

probes:
- name: pressure_probes

enabled: yes
type: PointProbe
probe_points:
- py$ [’p’, ’pressure_leading’, Cx - R * 1.0001, Cy]
- py$ [’p’, ’pressure_trailing’, Cx + R * 1.0001, Cy]

hooks:
post_timestep:
- name: Forces on the cylinder

enabled: yes
code: |

u = up_conv # the velocity before slope limiting
if not ’forceforms’ in hook_data:

cyl_id = boundary_by_name[’Cylinder’].mark_id
cyl_ds = ds(cyl_id)
n = FacetNormal(mesh)
ff = hook_data[’forceforms’] = {}
Tp = - p * n
Tv = 2 * mu * dot(sym(nabla_grad(u)), n)
ff[’Fpx’] = Form(dot(Tp, as_vector([1, 0])) * cyl_ds)
ff[’Fpy’] = Form(dot(Tp, as_vector([0, 1])) * cyl_ds)
ff[’Fvx’] = Form(dot(Tv, as_vector([1, 0])) * cyl_ds)
ff[’Fvy’] = Form(dot(Tv, as_vector([0, 1])) * cyl_ds)

for name, form in hook_data[’forceforms’].items():
val = assemble(form)
simulation.reporting.report_timestep_value(name, val)

- name: Adjust timestep
enabled: yes
code: |

Cell and facet based Courant numbers
Co = simulation.reporting.timestep_xy_reports.get(’Co’, [0])
Cof = simulation.reporting.timestep_xy_reports.get(’Cof_max’, [0])

Max values in a window (to avoid changing time step too often)
if len(Co) > 15:

window_Co = numpy.max(Co[-10:])
window_Cof = numpy.max(Cof[-10:])

else:
window_Co = 1e10
window_Cof = 1e10

dt_lower = simulation.dt / 2
dt_higher = simulation.dt * 2

new_dt = None
if (max(Co[-1], Cof[-1]) > CRIT_CO

and dt_lower - MIN_DT > 1e-4):

167

C. Example: flow around 2D cylinder

new_dt = dt_lower
elif (max(window_Co, window_Cof) < CRIT_CO / 6

and dt_higher - MAX_DT < 1e-4):
new_dt = dt_higher

if new_dt is not None:
simulation.log.info(

’Changing dt from %.5f to %.5f’ % (dt, new_dt)
)
simulation.input.set_value(’time/dt’, new_dt)

- name: Assess the numerical viscosity
code: |

domains = [
("all", "1.0"),
("nearcyl",
"abs(x[0] - Cx) < 3 * R and abs(x[1] - Cy) < 3 * R"),
("street",
"abs(x[0] - Cx - 7*R) < R * 5 "
"and abs(x[1] - Cy) < 3 * R")

]
u = up_conv # the velocity before slope limiting
for domain, domain_cpp in domains:

omega = Expression(domain_cpp, R=R, Cx=Cx, Cy=Cy, degree=1)
ek = 0.5 * rho * dot(u, u)

Compute terms of the kinetic energy equation
Ek = assemble(ek * omega * dx)
Fk = assemble(div(u * ek) * omega * dx)
Fa = assemble(div(u * p) * omega * dx)
Fv = assemble(nu * div(grad(ek)) * omega * dx)
eps_v = assemble(

mu * inner(nabla_grad(u), nabla_grad(u)) * omega * dx
)

Add computed numbers to logs
report = simulation.reporting.report_timestep_value
report(’Ek_%s’ % domain, Ek)
report(’Fk_%s’ % domain, Fk)
report(’Fa_%s’ % domain, Fa)
report(’Fv_%s’ % domain, Fv)
report(’EpsV_%s’ % domain, eps_v)

References

Geuzaine, C. and Remacle, J.-F. (Sept. 10, 2009). “Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities”. International
Journal for Numerical Methods in Engineering 79.11, pp. 1309–1331.

Schäfer, M. et al. (1996). “Benchmark Computations of Laminar Flow Around a
Cylinder”. In: Flow Simulation with High-Performance Computers II: DFG
Priority Research Programme Results 1993–1995. Ed. by Hirschel, E. H.
Notes on Numerical Fluid Mechanics (NNFM). Wiesbaden: Vieweg+Teubner
Verlag, pp. 547–566.

168

	Abstract
	Preface
	Contents
	Introduction
	Problem statement
	Motivation
	Method selection
	Literature review
	Free-surface flow
	DG FEM for incompressible flow
	Slope limiters in DG FEM
	Recent developments

	The discontinuous Galerkin method
	The advection equation
	Elliptic operators

	Convective stability—flux limiters
	Convective stability—slope limiters
	The volume-of-fluid method
	References

	Summary of papers
	Papers
	Slope limiting the velocity field in a two-phase flow solver
	Introduction
	The numerical method
	Instabilities
	Preliminaries
	Discretisation
	Hdiv projection of the velocity field

	Slope limiting
	The hierarchical Taylor-polynomial-based slope limiter
	On slope limiting of solenoidal fields
	A split solenoidal slope-limiting algorithm

	Results
	Taylor-Green vortex
	Dam break
	Tank filling

	Discussion
	Conclusion
	References

	Exactly incompressible DG FEM pressure-splitting schemes
	Introduction
	The DG FEM discretisation
	Differential Poisson equation for the pressure

	The IPCS-D method
	The IPCS-A method
	The SIMPLE method
	Exact mass conservation
	Numerical experiments
	Taylor–Green 2D flow
	Ethier–Steinman 3D flow
	Efficiency

	Conclusions
	References

	High-density-ratio two-phase flow simulations in 3D
	Introduction
	Mathematical model of free-surface flow
	Discontinuous Galerkin discretisation
	Momentum equation
	Continuity equation
	Density transport
	Velocity slope limiter

	Solution algorithm
	Incoming waves and boundary reflections
	Implementation
	Example input file

	Numerical examples
	3D dam breaking
	Cylinder in regular waves

	Discussion
	References

	Ocellaris: a DG FEM solver for free-surface flows
	References

	Conclusion
	Novelty
	Suggestions for further work
	Appendices
	Example: Lid-driven cavity flow
	Introduction
	Results
	Input file
	References

	Example: Taylor–Green vortex
	Introduction
	Assessing the numerical viscosity
	Results
	Input file
	References

	Example: flow around 2D cylinder
	Introduction
	Results
	Input file
	References

